Skip to main content

Advertisement

Log in

Artemisia alleviates AGE-induced liver complications via MAPK and RAGE signaling pathways modulation: a combinatorial study

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Artemisia herba-alba (AHA) is a traditionally used plant to treat various diseases, including diabetes and metabolic dysfunctions. Plant extracts are generally explored empirically without a deeper assessment of their mechanism of action. Here, we describe a combinatorial study of biochemical, molecular, and bioinformatic (metabolite-protein pharmacology network) analyses to elucidate the mechanism of action of AHA and shed light on its multilevel effects in the treatment of diabetes-related advanced glycation end-products (AGE)-induced liver damages. The extract’s polyphenols and flavonoids content were measured and then identified via LC-Q-TOF–MS/MS. Active compounds were used to generate a metabolite-target interaction network via Swiss Target Prediction and other databases. The extract was tested for its antiglycation and aggregation properties. Next, THLE-2 liver cells were challenged with AGEs, and the mechanistic markers were measured [TNF-α, IL-6, nitric oxide, total antioxidant capacity, lipid peroxidation (LPO), and caspase 3]. Metabolite and network screening showed the involvement of AHA in diabetes, glycation, liver diseases, aging, and apoptosis. Experimental confirmation showed that AHA inhibited protein modification and AGE formation. Additionally, AHA reduced inflammatory mediators (IL-6, TNFα), oxidative stress markers (NO, LPO), and apoptosis (Caspase 3). On the other hand, cellular total antioxidant capacity was restored to normal levels. The combinatorial study showed that AHA regulates AGE-induced liver damages through MAPK-AKT and AGE-RAGE signaling pathways. This report highlights the combination of experimental and network pharmacology for the exact elucidation of AHA mechanism of action as a multitarget option in the therapy of diabetes and AGEs-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. Further data is available from the corresponding author on reasonable request.

References

  1. Hutchinson L, Kirk R (2011) High drug attrition rates–where are we going wrong? Nat Rev Clin Oncol 8(4):189–190. https://doi.org/10.1038/nrclinonc.2011.34

    Article  PubMed  Google Scholar 

  2. Hopkins AL (2007) Network pharmacology. Nat Biotechnol 25(10):1110–1111. https://doi.org/10.1038/nbt1007-1110

    Article  CAS  PubMed  Google Scholar 

  3. Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70(3 Suppl):491S-S499. https://doi.org/10.1093/ajcn/70.3.491s

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee S, Bhattacharjee P, Kar A, Mukherjee PK (2019) LC-MS/MS analysis and network pharmacology of Trigonella foenum-graecum: a plant from Ayurveda against hyperlipidemia and hyperglycemia with combination synergy. Phytomedicine 60:152944. https://doi.org/10.1016/j.phymed.2019.152944

    Article  CAS  PubMed  Google Scholar 

  5. Sayej WN, Knight Iii PR, Guo WA, Mullan B, Ohtake PJ, Davidson BA et al (2016) Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-type mice. Biomed Res Int 2016:7867852. https://doi.org/10.1155/2016/7867852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernando DH, Forbes JM, Angus PW, Herath CB (2019) Development and progression of non-alcoholic fatty liver disease: the role of advanced glycation end products. Int J Mol Sci 20(20):5037. https://doi.org/10.3390/ijms20205037

    Article  CAS  PubMed Central  Google Scholar 

  7. Henning C, Glomb MA (2016) Pathways of the Maillard reaction under physiological conditions. Glycoconj J 33(4):499–512. https://doi.org/10.1007/s10719-016-9694-y

    Article  CAS  PubMed  Google Scholar 

  8. Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ (2021) Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med 53(2):168–188. https://doi.org/10.1038/s12276-021-00561-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leung C, Herath CB, Jia Z, Goodwin M, Mak KY, Watt MJ et al (2014) Dietary glycotoxins exacerbate progression of experimental fatty liver disease. J Hepatol 60(4):832–838. https://doi.org/10.1016/j.jhep.2013.11.033

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N et al (2018) The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 28(3):337–352. https://doi.org/10.1016/j.cmet.2018.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G et al (2007) Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 62(4):427–433. https://doi.org/10.1093/gerona/62.4.427

    Article  PubMed  Google Scholar 

  12. Amri I, De Martino L, Marandino A, Lamia H, Mohsen H, Scandolera E et al (2013) Chemical composition and biological activities of the essential oil from Artemisia herba-alba growing wild in Tunisia. Nat Prod Commun 8(3):407–410. https://doi.org/10.1177/1934578X1300800333

    Article  CAS  PubMed  Google Scholar 

  13. Jung HA, Park JJ, Islam MN, Jin SE, Min BS, Lee JH et al (2012) Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Arch Pharm Res 35(6):1021–1035. https://doi.org/10.1007/s12272-012-0610-0

    Article  CAS  PubMed  Google Scholar 

  14. Younsi F, Rahali N, Mehdi S, Boussaid M, Messaoud C (2018) Relationship between chemotypic and genetic diversity of natural populations of Artemisia herba-alba Asso growing wild in Tunisia. Phytochemistry 148:48–56. https://doi.org/10.1016/j.phytochem.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  15. Abu-Darwish MS, Cabral C, Goncalves MJ, Cavaleiro C, Cruz MT, Efferth T et al (2015) Artemisia herba-alba essential oil from Buseirah (South Jordan): chemical characterization and assessment of safe antifungal and anti-inflammatory doses. J Ethnopharmacol 174:153–160. https://doi.org/10.1016/j.jep.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  16. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M et al (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72(1–2):35–42. https://doi.org/10.1016/s0378-8741(00)00196-3

    Article  CAS  PubMed  Google Scholar 

  17. Marvibaigi M, Amini N, Supriyanto E, Jamil S, Abdul Majid FA, Khangholi S (2014) Total phenolic content, antioxidant and antibacterial properties of Scurrula ferruginea extracts. Jurnal Teknologi. https://doi.org/10.11113/jt.v70.3517

    Article  Google Scholar 

  18. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moulahoum H, Sanli S, Timur S, Zihnioglu F (2019) Potential effect of carnosine encapsulated niosomes in bovine serum albumin modifications. Int J Biol Macromol 137:583–591. https://doi.org/10.1016/j.ijbiomac.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Tupe RS, Agte VV (2010) Role of zinc along with ascorbic acid and folic acid during long-term in vitro albumin glycation. Br J Nutr 103(3):370–377. https://doi.org/10.1017/S0007114509991929

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes ACF, Vieira NC, Santana AL, Gandra RLP, Rubia C, Castro-Gamboa I et al (2020) Peanut skin polyphenols inhibit toxicity induced by advanced glycation end-products in RAW2647 macrophages. Food Chem Toxicol 145:111619. https://doi.org/10.1016/j.fct.2020.111619

    Article  CAS  PubMed  Google Scholar 

  22. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138. https://doi.org/10.1016/0003-2697(82)90118-x

    Article  CAS  PubMed  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  24. Vijaykrishnaraj M, Wang K (2021) Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: a phytotherapy approaches. Biomed Pharmacother 144:112336. https://doi.org/10.1016/j.biopha.2021.112336

    Article  CAS  Google Scholar 

  25. Munro B, Vuong QV, Chalmers AC, Goldsmith CD, Bowyer MC, Scarlett CJ (2015) Phytochemical, antioxidant and anti-cancer properties of Euphorbia tirucalli methanolic and aqueous extracts. Antioxidants (Basel) 4(4):647–661. https://doi.org/10.3390/antiox4040647

    Article  CAS  Google Scholar 

  26. Dzib-Guerra WD, Escalante-Erosa F, Garcia-Sosa K, Derbre S, Blanchard P, Richomme P et al (2016) Anti-advanced glycation end-product and free radical scavenging activity of plants from the Yucatecan Flora. Pharmacognosy Res 8(4):276–280. https://doi.org/10.4103/0974-8490.188883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Huang H, Ma X, Wang L, Liu C, Hou B et al (2018) Anti-inflammatory effects and mechanism of the total flavonoids from Artemisia scoparia Waldst. et kit. in vitro and in vivo. Biomed Pharmacother 104:390–403. https://doi.org/10.1016/j.biopha.2018.05.054

    Article  CAS  PubMed  Google Scholar 

  28. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK (2021) Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharm Res 44(5):439–474. https://doi.org/10.1007/s12272-021-01328-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui C-B (2009) Inhibitory activity of caffeoylquinic acids from the aerial parts of artemisia princeps on rat lens aldose reductase and on the formation of advanced glycation end products. J Korean Soc Appl Bi 52(6):655–662. https://doi.org/10.3839/jksabc.2009.109

    Article  CAS  Google Scholar 

  30. Fernandes ACF, Martins IM, Moreira DKT, Macedo GA (2020) Use of agro-industrial residues as potent antioxidant, antiglycation agents, and α-amylase and pancreatic lipase inhibitory activity. J Food Process Pres 44(4):e14397. https://doi.org/10.1111/jfpp.14397

    Article  CAS  Google Scholar 

  31. Fernandes ACF, Santana AL, Martins IM, Moreira DKT, Macedo JA, Macedo GA (2020) Anti-glycation effect and the alpha-amylase, lipase, and alpha-glycosidase inhibition properties of a polyphenolic fraction derived from citrus wastes. Prep Biochem Biotechnol 50(8):794–802. https://doi.org/10.1080/10826068.2020.1737941

    Article  CAS  PubMed  Google Scholar 

  32. Song Q, Liu J, Dong L, Wang X, Zhang X (2021) Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed Pharmacother 140:111750. https://doi.org/10.1016/j.biopha.2021.111750

    Article  CAS  PubMed  Google Scholar 

  33. Cepas V, Collino M, Mayo JC, Sainz RM (2020) Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants (Basel) 9(2):142. https://doi.org/10.3390/antiox9020142

    Article  CAS  Google Scholar 

  34. Mukhopadhyay S, Mukherjee TK (2005) Bridging advanced glycation end product, receptor for advanced glycation end product and nitric oxide with hormonal replacement/estrogen therapy in healthy versus diabetic postmenopausal women: a perspective. Biochim Biophys Acta 1745(2):145–155. https://doi.org/10.1016/j.bbamcr.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  35. Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, Porozov YB, Terentiev AA (2019) Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev 2019:3085756. https://doi.org/10.1155/2019/3085756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Zheng T, Sang S, Lv L (2014) Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem 62(50):12152–12158. https://doi.org/10.1021/jf504132x

    Article  CAS  PubMed  Google Scholar 

  37. Jeong SH, Kim J, Min H (2018) In vitro anti-inflammatory activity of the Artemisia montana leaf ethanol extract in macrophage RAW 264.7 cells. Food Agric Immunol 29(1):688–98. https://doi.org/10.1080/09540105.2018.1439454

    Article  CAS  Google Scholar 

  38. Yu W, Hu X, Wang M (2018) Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264.7 cells. J Funct Foods 40:272–9. https://doi.org/10.1016/j.jff.2017.11.003

    Article  CAS  Google Scholar 

  39. Albensi BC (2019) What is nuclear factor kappa B (NF-kappaB) doing in and to the mitochondrion? Front Cell Dev Biol 7(154):154. https://doi.org/10.3389/fcell.2019.00154

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ghanbari M, Sadeghimahalli F (2022) Aqueous and alcoholic extracts of Artemisia annua L. improved insulin resistance via decreasing TNF-alpha, IL-6 and free fatty acids in high-fat diet/streptozotocin-induced diabetic mice. Avicenna J Phytomed 12(1):54–66. https://doi.org/10.22038/AJP.2021.18829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeong D, Yi YS, Sung GH, Yang WS, Park JG, Yoon K et al (2014) Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract. J Ethnopharmacol 152(3):487–496. https://doi.org/10.1016/j.jep.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  42. Taabazuing CY, Okondo MC, Bachovchin DA (2017) Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 24(4):507–14 e4. https://doi.org/10.1016/j.chembiol.2017.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahali S, Raviprakash N, Raghavendra PB, Manna SK (2011) Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: involvement of Ca2+ mediated by interleukin-8 protein. J Biol Chem 286(40):34903–34913. https://doi.org/10.1074/jbc.M111.279190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao WP, Yang YF, Wu HZ, Xiong YY (2019) Predicting the mechanism of the analgesic property of Yanhusuo based on network pharmacology. Nat Prod Commun 14(10):1934578X19883071. https://doi.org/10.1177/1934578x19883071

    Article  CAS  Google Scholar 

  45. Huang J, Cheung F, Tan HY, Hong M, Wang N, Yang J et al (2017) Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol Med Rep 16(4):4583–4592. https://doi.org/10.3892/mmr.2017.7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by The Scientific and Technological Research Council of Turkey—TUBITAK (120Z200). The current project was partially funded by the Projets de Recherche-Formation Universitaire (PRFU) (D01N01UN160420180008). EGE MATAL (EGE University) is acknowledged for the LC-Q-TOF-MS/MS analyses and cell culture experiments.

Funding

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (D01N01UN160420180008), Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (120Z200).

Author information

Authors and Affiliations

Authors

Contributions

HM: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing—Original Draft, Visualization. FG: Methodology, Investigation, Writing—Original Draft. ZK: Methodology, Investigation, Resources, Funding acquisition. MT: Conceptualization, Validation, Resources. YB: Conceptualization, Validation, Resources. KT: Investigation, Visualization. ST: Conceptualization, Methodology, Validation, Resources, Supervision. FZ: Conceptualization, Methodology, Validation, Resources, Writing—Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Hichem Moulahoum.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human and/or animal samples performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3068 kb)

Supplementary file2 (RAR 3809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulahoum, H., Ghorbanizamani, F., Khiari, Z. et al. Artemisia alleviates AGE-induced liver complications via MAPK and RAGE signaling pathways modulation: a combinatorial study. Mol Cell Biochem 477, 2345–2357 (2022). https://doi.org/10.1007/s11010-022-04437-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04437-w

Keywords

Navigation