Skip to main content

Advertisement

Log in

Inhibition of miR-1298-5p attenuates sepsis lung injury by targeting SOCS6

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sepsis is one of the leading causes of morbidity and mortality and a major cause of acute lung injury (ALI). carried by exosomes play a role in a variety of diseases. However,there are not many studies of exosomal miRNAs in sepsis and sepsis lung injury.miR-1298-5p and suppressor of cytokine signaling 6 (SOCS6) were silenced or overexpressed in human bronchial epithelial cells (BEAS-2B). PKH-67 Dye was used to trace exosome endocytosis. Cell permeability was evaluated by measuring trans-epithelial electrical resistance (TEER) and FITC dextran flux. ELISA kits were used for cytokine detection. Quantitative RT-PCR and western blots were used to evaluate gene expression. miR-1298-5p was elevated in exosomes from patients with sepsis lung injury (Sepsis_exo). Treatment of BEAS-2B cells using Sepsis_exo significantly inhibited cell proliferation, and induced cell permeability and inflammatory response. miR-1298-5p directly targeted SOCS6. Overexpressing SOCS6 reversed miR-1298-5p-induced cell permeability and inflammatory response. Inhibition of STAT3 blocked SOCS6-silencing caused significant increase of cell permeability and inflammation. Exosomes isolated from patients of sepsis lung injury increased cell permeability and inflammatory response in BEAS-2B cells through exosomal miR-1298-5p which targeted SOCS6 via STAT3 pathway. The findings highlight the importance of miR-1298-5p/SOCS6/STAT3 axis in sepsis lung injury and provide new insights into therapeutic strategies for sepsis lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ALI:

Acute lung injury

miRNAs:

MicroRNAs

SOCS6:

Suppressor of cytokine signaling 6

TEER:

Trans-epithelial electrical resistance

Sepsis_exo:

Exosomes from patients with sepsis lung injury

CIS:

Cytokine-inducible SH2-containing protein

STAT3:

Signal transducer and activator of transcription 3

EVs:

Extracellular vesicles

GC:

Gastric cancer

IBD:

Inflammatory bowel disease

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakr Y, Jaschinski U, Wittebole X, Szakmany T, Lipman J, Namendys-Silva SA, Martin-Loeches I, Leone M, Lupu MN, Vincent JL, Investigators I (2018) Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit. Open Forum Infect Dis 5:ofy313

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clemente G, Tuttolomondo A, Colomba D, Pecoraro R, Renda C, Della Corte V, Maida C, Simonetta I, Pinto A (2015) When sepsis affects the heart: a case report and literature review. World J Clin Cases 3:743–750

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gyawali B, Ramakrishna K, Dhamoon AS (2019) Sepsis: the evolution in definition, pathophysiology, and management. SAGE Open Med 7:2050312119835043

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, Anderson H 3rd, Hoth JJ, Mikkelsen ME, Gentile NT, Gong MN, Talmor D, Bajwa E, Watkins TR, Festic E, Yilmaz M, Iscimen R, Kaufman DA, Esper AM, Sadikot R, Douglas I, Sevransky J, Malinchoc M, Illness USC (2011) Injury Trials Group: lung injury prevention study I. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 183:462–470

    Article  PubMed  Google Scholar 

  6. Maybauer MO, Maybauer DM, Herndon DN (2006) Incidence and outcomes of acute lung injury. N Engl J Med 354:416–417

    Article  CAS  PubMed  Google Scholar 

  7. Iscimen R, Cartin-Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B, Gajic O (2008) Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med 36:1518–1522

    Article  PubMed  Google Scholar 

  8. Fein AM, Calalang-Colucci MG (2000) Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin 16:289–317

    Article  CAS  PubMed  Google Scholar 

  9. Goodman RB, Pugin J, Lee JS, Matthay MA (2003) Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 14:523–535

    Article  CAS  PubMed  Google Scholar 

  10. Lotem J, Sachs L (2002) Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 21:3284–3294

    Article  CAS  PubMed  Google Scholar 

  11. Sasi W, Sharma AK, Mokbel K (2014) The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014:630797

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kabir NN, Sun J, Ronnstrand L, Kazi JU (2014) SOCS6 is a selective suppressor of receptor tyrosine kinase signaling. Tumour Biol 35:10581–10589

    Article  CAS  PubMed  Google Scholar 

  13. Lai RH, Wang MJ, Yang SH, Chen JY (2009) Genomic organization and functional characterization of the promoter for the human suppressor of cytokine signaling 6 gene. Gene 448:64–73

    Article  CAS  PubMed  Google Scholar 

  14. Yoon S, Yi YS, Kim SS, Kim JH, Park WS, Nam SW (2012) SOCS5 and SOCS6 have similar expression patterns in normal and cancer tissues. Tumour Biol 33:215–221

    Article  CAS  PubMed  Google Scholar 

  15. Wu Q, Luo G, Yang Z, Zhu F, An Y, Shi Y, Fan D (2014) miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells. FEBS Lett 588:2055–2062

    Article  CAS  PubMed  Google Scholar 

  16. Zhu JG, Dai QS, Han ZD, He HC, Mo RJ, Chen G, Chen YF, Wu YD, Yang SB, Jiang FN, Chen WH, Sun ZL, Zhong WD (2013) Expression of SOCSs in human prostate cancer and their association in prognosis. Mol Cell Biochem 381:51–59

    Article  CAS  PubMed  Google Scholar 

  17. Letellier E, Schmitz M, Baig K, Beaume N, Schwartz C, Frasquilho S, Antunes L, Marcon N, Nazarov PV, Vallar L, Even J, Haan S (2014) Identification of SOCS2 and SOCS6 as biomarkers in human colorectal cancer. Br J Cancer 111:726–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Filgueiras LR Jr, Martins JO, Serezani CH, Capelozzi VL, Montes MB, Jancar S (2012) Sepsis-induced acute lung injury (ALI) is milder in diabetic rats and correlates with impaired NFkB activation. PLoS ONE 7:e44987

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Xie Y, Zhang L, Zhao H (2020) MicroRNA-155 participates in smoke-inhalation-induced acute lung injury through inhibition of SOCS-1. Molecules 25:1022

    Article  CAS  PubMed Central  Google Scholar 

  20. Wang H, Lafdil F, Kong X, Gao B (2011) Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci 7:536–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang C, Zhou G, Zeng Z (2014) Effects of peroxisome proliferator-activated receptor-beta/delta on sepsis induced acute lung injury. Chin Med J (Engl) 127:2129–2137

    CAS  Google Scholar 

  23. Ikegami M, Falcone A, Whitsett JA (1985) STAT-3 regulates surfactant phospholipid homeostasis in normal lung and during endotoxin-mediated lung injury. J Appl Physiol 2008(104):1753–1760

    Google Scholar 

  24. Jones MR, Quinton LJ, Simms BT, Lupa MM, Kogan MS, Mizgerd JP (2006) Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J Infect Dis 193:360–369

    Article  CAS  PubMed  Google Scholar 

  25. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367:eaau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H, Chen PS, Liu BC (2013) MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol 305:F1220-1227

    Article  CAS  PubMed  Google Scholar 

  27. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  28. Benz F, Tacke F, Luedde M, Trautwein C, Luedde T, Koch A, Roderburg C (2015) Circulating microRNA-223 serum levels do not predict sepsis or survival in patients with critical illness. Dis Markers 2015:384208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Roderburg C, Luedde M, Vargas Cardenas D, Vucur M, Scholten D, Frey N, Koch A, Trautwein C, Tacke F, Luedde T (2013) Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS ONE 8:e54612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang C, Zhou G, Zeng Z (2014) Effects of peroxisome proliferator-activated receptor-β/δ on sepsis induced acute lung injury. Chin Med J (Engl) 127:2129–2137

    CAS  Google Scholar 

  31. Peng W, Jiang R, Li Y, Chen J, Shao Q, Qian K, Liu F (2021) Exosomes derived from human-induced pluripotent mesenchymal stem cells inhibit the pyrolysis of alveolar macrophages. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 33:43–48

    PubMed  Google Scholar 

  32. Zheng JP, Dai YM, Chen Z, Chen Q, Zheng Y, Lin X, Cui TJ (2020) Circular RNA circ-ABCB10 promotes non-small cell lung cancer proliferation and inhibits cell apoptosis through repressing KISS1. Eur Rev Med Pharmacol Sci 24:2518–2524

    PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  34. Van Den Broucke S, Vanoirbeek J, Alfaro-Moreno E, Hoet P (2020) Contribution of mast cells in irritant-induced airway epithelial barrier impairment in vitro. Toxicol Ind Health 36:823–834

    Article  CAS  Google Scholar 

  35. Li G, Sun L, Mu Z, Liu S, Qu H, Xie Q, Hu B (2020) MicroRNA-1298-5p inhibits cell proliferation and the invasiveness of bladder cancer cells via down-regulation of connexin 43. Biochem Cell Biol 98:227–237

    Article  CAS  PubMed  Google Scholar 

  36. Wang CM, Cheng BH, Xue QJ, Chen J, Bai B (2017) MiR-1298 affects cell proliferation and apoptosis in C6 cells by targeting SET domain containing 7. Int J Immunopathol Pharmacol 30:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai G, Qiao S, Chen K (2015) Suppression of miR-221 inhibits glioma cells proliferation and invasion via targeting SEMA3B. Biol Res 48:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fan H, Goodwin AJ, Chang E, Zingarelli B, Borg K, Guan S, Halushka PV, Cook JA (2014) Endothelial progenitor cells and a stromal cell-derived factor-1alpha analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med 189:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Real JM, Ferreira LRP, Esteves GH, Koyama FC, Dias MVS, Bezerra-Neto JE, Cunha-Neto E, Machado FR, Salomao R, Azevedo LCP (2018) Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Crit Care 22:68

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou Y, Dang J, Chang KY, Yau E, Aza-Blanc P, Moscat J, Rana TM (2016) miR-1298 inhibits mutant KRAS-driven tumor growth by repressing FAK and LAMB3. Cancer Res 76:5777–5787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiu ZK, Liu N, Zhao SF, Ding AP, Cheng G, Qiu WS, Qi WW (2018) MiR-1298 expression correlates with prognosis and inhibits cell proliferation and invasion of gastric cancer. Eur Rev Med Pharmacol Sci 22:1672–1679

    PubMed  Google Scholar 

  42. Ruibin W, Zheng X, Chen J, Zhang X, Yang X, Lin Y (2018) Micro RNA-1298 opposes the effects of chronic oxidative stress on human trabecular meshwork cells via targeting on EIF4E3. Biomed Pharmacother 100:349–357

    Article  PubMed  CAS  Google Scholar 

  43. Nguyen AV, Wu YY, Liu Q, Wang D, Nguyen S, Loh R, Pang J, Friedman K, Orlofsky A, Augenlicht L, Pollard JW, Lin EY (2013) STAT3 in epithelial cells regulates inflammation and tumor progression to malignant state in colon. Neoplasia 15:998–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lovato P, Brender C, Agnholt J, Kelsen J, Kaltoft K, Svejgaard A, Eriksen KW, Woetmann A, Odum N (2003) Constitutive STAT3 activation in intestinal T cells from patients with Crohn’s disease. J Biol Chem 278:16777–16781

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank TopEdit (www.topeditsci.com) for English language editing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.M. designed this projected and wrote the manuscript; J.M., L.Y.X. performed the experiments; Q.H.S., X.Y.W., B.L. analyzed the data and edited diagrams. All authors have contributed to, read, and agreed upon the final contents of the manuscript for submission.

Corresponding author

Correspondence to Jian Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

The protocol for the present study was approved by the Ethics Committee of Shanghai Pulmonary Hospital (Shanghai, China), and it conforms to the provisions of the Declaration of Helsinki in 1995. All participants have provided their written informed consent to participate in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xu, LY., Sun, QH. et al. Inhibition of miR-1298-5p attenuates sepsis lung injury by targeting SOCS6. Mol Cell Biochem 476, 3745–3756 (2021). https://doi.org/10.1007/s11010-021-04170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04170-w

Keywords

Navigation