Skip to main content
Log in

The sepsis induced defective aggravation of immune cells: a translational science underling chemico-biological interactions from altered bioenergetics and/or cellular metabolism to organ dysfunction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sepsis is described as a systemic immune response of the body to an infectious process that might result in dysfunctional organs that may lead to death. In clinical practice, sepsis is considered a medical emergency. The initial event in sepsis caused by a deregulated host response towards harmful microorganisms that leads to an aggravated systemic inflammatory response syndrome (SIRS) to tackle with pathogen invasion and a compensatory anti-inflammatory response syndrome (CARS) that lasts for several days. The inflammatory response and the cellular damage as well as the risk of an organ dysfunction are in direct proportion. Even though, the pathogenesis of sepsis remains unclear, many studies have shown evidence of role of oxidants and antioxidants in sepsis. The altered innate and adaptive immune cell and upregulated production and release of cytokines and chemokines most probably due to involvement of JAK–STAT pathway, disturbance in redox homeostasis due to low clearance of lactate and other oxidative stressors, contributes to sepsis process to organ dysfunction which contribute to increase rates of mortality among these patients. Hence, the treatment strategies for sepsis include antibiotics, ventilator and blood glucose management and other strategies for resuscitation are rapidly progressing. In the current review, we mainly concentrate on throwing light on the main molecular aspects and chemico-biological interactions that shows involvement in pathways manipulating alteration in physiology of immune cells (innate and adaptive) that change the bioenergetics/cellular metabolism to organ dysfunction and correlation of these altered pathway, improve the understating for new therapeutic target for sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mosevoll KA, Skrede S, Markussen DL, Fanebust HR, Flaatten HK, Aßmus J, Reikvam H, Bruserud Ø (2018) Inflammatory mediator profiles differ in sepsis patients with and without bacteremia. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.00691

  3. Lelubre C, Vincent J-L (2018) Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol 14:417–427. https://doi.org/10.1038/s41581-018-0005-7

    Article  PubMed  Google Scholar 

  4. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851. https://doi.org/10.1056/NEJMra1208623

    Article  CAS  PubMed  Google Scholar 

  5. Peters van Ton AM, Kox M, Abdo WF, Pickkers P (2018) Precision immunotherapy for sepsis. Front Immunol 9:1926. https://doi.org/10.3389/fimmu.2018.01926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710. https://doi.org/10.1007/bf01709751

    Article  CAS  PubMed  Google Scholar 

  7. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent J-L (2016) Sepsis and septic shock. Nat Rev Dis Primers 2:16045. https://doi.org/10.1038/nrdp.2016.45

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu H, Sun S-C (2016) Ubiquitin signaling in immune responses. Cell Res 26:457–483. https://doi.org/10.1038/cr.2016.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta G, Kazmi I, Afzal M, Rahman M, Saleem S, Ashraf MS, Khusroo MJ, Nazeer K, Ahmed S, Mujeeb M (2012) Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J Ethnopharmacol 141:810–816

    Article  CAS  Google Scholar 

  10. Ajibade AA, Wang HY, Wang R-F (2013) Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol 34:307–316. https://doi.org/10.1016/j.it.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  11. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu SF, Malik AB (2006) NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Phys Lung Cell Mol Phys 290:L622–L645. https://doi.org/10.1152/ajplung.00477.2005

    Article  CAS  Google Scholar 

  13. Yang H, Wang H, Chavan SS, Andersson U (2015) High Mobility Group Box Protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol Med 21:S6–S12. https://doi.org/10.2119/molmed.2015.00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta G, Krishna G, Chellappan DK, Gubbiyappa KS, Candasamy M, Dua K (2014) Protective effect of pioglitazone, a PPARγ agonist against acetaminophen-induced hepatotoxicity in rats. Mol Cell Biochem 393:223–228

    Article  CAS  Google Scholar 

  15. Kazmi I, Gupta G, Afzal M, Rahman M, Anwar F (2012) Pharmacological evaluation of anxiolytic activity of ursolic acid stearoyl glucoside isolated from Lantana camara. CNS Neurosci Ther 18:707

    Article  CAS  Google Scholar 

  16. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175. https://doi.org/10.1111/j.1600-065X.2012.01146.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Timmermans K, Kox M, Scheffer GJ, Pickkers P (2016) Danger in the intensive care unit: damps in critically ill patients. Shock 45:108–116. https://doi.org/10.1097/SHK.0000000000000506

    Article  CAS  PubMed  Google Scholar 

  18. Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT, Gomez H, Gomez A, Murray P, Kellum JA, Workgroup AX (2016) Mitochondrial function in sepsis. Shock (Augusta, GA) 45:271–281. https://doi.org/10.1097/SHK.0000000000000463

    Article  CAS  Google Scholar 

  19. Liaudet L, Rosenblatt-Velin N, Pacher P (2013) Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr Vasc Pharmacol 11:196–207. https://doi.org/10.2174/157016113805290281

    Article  CAS  PubMed  Google Scholar 

  20. Souza ACP, Yuen PST, Star RA (2015) Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI. Kidney Int 87:1100–1108. https://doi.org/10.1038/ki.2015.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaplan MJ, Radic M (2012) Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 189:2689–2695. https://doi.org/10.4049/jimmunol.1201719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herzig D, Fang G, Toliver-Kinsky TE, Guo Y, Bohannon J, Sherwood ER (2012) STAT1-deficient mice are resistant to cecal ligation and puncture-induced septic shock. Shock 38:395–402. https://doi.org/10.1097/SHK.0b013e318265a2ab

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lentsch AB, Kato A, Davis B, Wang W, Chao C, Edwards MJ (2001) STAT4 and STAT6 regulate systemic inflammation and protect against lethal endotoxemia. J Clin Invest 108:1475–1482. https://doi.org/10.1172/jci13763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clere-Jehl R, Mariotte A, Meziani F, Bahram S, Georgel P, Helms J JAK-STAT targeting offers novel therapeutic opportunities in sepsis. Trends Mol Med. https://doi.org/10.1016/j.molmed.2020.06.007

  25. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388. https://doi.org/10.1038/nature01339

    Article  CAS  PubMed  Google Scholar 

  26. Singhvi G, Patil S, Girdhar V, Chellappan DK, Gupta G, Dua K (2018) 3D-printing: an emerging and a revolutionary technology in pharmaceuticals. Panminerva Med 60:170–173

    Article  Google Scholar 

  27. Gupta G, Singh R, David SR, Verma RK (2013) Effect of rosiglitazone, a PPAR-γ ligand on haloperidol-induced catalepsy. CNS Neurosci Ther 19:724

    Article  CAS  Google Scholar 

  28. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859. https://doi.org/10.1038/nature01321

    Article  CAS  PubMed  Google Scholar 

  29. Wazea SA, Wadie W, Bahgat AK, El-Abhar HS (2018) Galantamine anti-colitic effect: role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci Rep 8:5110. https://doi.org/10.1038/s41598-018-23359-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lv R, Zhao J, Lei M, Xiao D, Yu Y, Xie J (2017) IL-33 attenuates sepsis by inhibiting IL-17 receptor signaling through upregulation of SOCS3. Cell Physiol Biochem 42:1961–1972. https://doi.org/10.1159/000479836

    Article  CAS  PubMed  Google Scholar 

  31. Tiwari J, Bajpai K, Gupta G, Sharma R, Verma RK, Dua K (2018) Tetrahydrocannabinol: a drug of interest. Panminerva Med 60:228

    Article  Google Scholar 

  32. Gupta G, de Jesus Andreoli Pinto T, Chellappan DK, Mishra A, Malipeddi H, Dua K (2018) A clinical update on metformin and lung cancer in diabetic patients. Panminerva Med 60:70–75

    PubMed  Google Scholar 

  33. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–2605. https://doi.org/10.1001/jama.2011.1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biemond BJ, Levi M, Ten Cate H, Van der Poll T, Büller HR, Hack CE, Ten Cate JW (1995) Plasminogen activator and plasminogen activator inhibitor I release during experimental endotoxaemia in chimpanzees: effect of interventions in the cytokine and coagulation cascades. Clin Sci (Lond) 88:587–594. https://doi.org/10.1042/cs0880587

    Article  CAS  Google Scholar 

  35. Hillmer EJ, Zhang H, Li HS, Watowich SS (2016) STAT3 signaling in immunity. Cytokine Growth Factor Rev 31:1–15. https://doi.org/10.1016/j.cytogfr.2016.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tiwari J, Gupta G, de Jesus Andreoli Pinto T, Sharma R, Pabreja K, Matta Y, Arora N, Mishra A, Dua K (2018) Role of microRNAs (miRNAs) in the pathophysiology of diabetes mellitus. Panminerva Med 60:25–28

    Article  Google Scholar 

  37. Gupta G, Dahiya R, Singh M, Tiwari J, Sah S, Ashwathanarayana M, Krishna G, Dua K (2018) Role of liraglutide in a major complication of diabetes: a critical review of clinical studies. Bull Pharm Res 8:155–164

    Google Scholar 

  38. Matsukawa A, Kudo S, Maeda T, Numata K, Watanabe H, Takeda K, Akira S, Ito T (2005) Stat3 in resident macrophages as a repressor protein of inflammatory response. J Immunol 175:3354–3359. https://doi.org/10.4049/jimmunol.175.5.3354

    Article  CAS  PubMed  Google Scholar 

  39. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Förster I, Akira S (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–49. https://doi.org/10.1016/s1074-7613(00)80005-9

    Article  CAS  PubMed  Google Scholar 

  40. Hotchkiss RS, Nicholson DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6:813–822. https://doi.org/10.1038/nri1943

    Article  CAS  PubMed  Google Scholar 

  41. Eddy WE, Gong K-Q, Bell B, Parks WC, Ziegler SF, Manicone AM (2017) Stat5 is required for CD103(+) dendritic cell and alveolar macrophage development and protection from lung injury. J Immunol (Baltimore, MD: 1950) 198:4813–4822. https://doi.org/10.4049/jimmunol.1601777

    Article  CAS  Google Scholar 

  42. Cao C, Yu M, Chai Y (2019) Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis 10:782. https://doi.org/10.1038/s41419-019-2015-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon J-M (2012) Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med (Cambridge, MA) 18:270–285. https://doi.org/10.2119/molmed.2011.00201

    Article  CAS  Google Scholar 

  44. Exline MC, Crouser ED (2008) Mitochondrial mechanisms of sepsis-induced organ failure. Front Biosci 13:5030–5041

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stoner HB, Little RA, Frayn KN, Elebute AE, Tresadern J, Gross E (1983) The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg 70:32–35. https://doi.org/10.1002/bjs.1800700113

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki M, Sasabe J, Miyoshi Y, Kuwasako K, Muto Y, Hamase K, Matsuoka M, Imanishi N, Aiso S (2015) Glycolytic flux controls d-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc Natl Acad Sci 112:E2217–E2224. https://doi.org/10.1073/pnas.1416117112

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, Liu J (2019) Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther 12:1195–1204. https://doi.org/10.2147/ott.S189687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang B, Gupta G, Singh M, Veerabhadrappa KVS, Mishra A, Chinnaboina GK (2018) Pharmacological evaluation of novel flavone from Morus alba in pentylenetetrazole-induced kindling and oxidative stress. J Environ Pathol Toxicol Oncol 37:43–52

    Article  CAS  Google Scholar 

  49. Gautam RK, Sharma S, Sharma K, Gupta G (2018) Evaluation of antiarthritic activity of butanol fraction of Punica granatum Linn. rind extract against Freund’s complete adjuvant-induced arthritis in rats. J Environ Pathol Toxicol Oncol 37:53–62

    Article  Google Scholar 

  50. Rabinowitz JD, Enerbäck S (2020) Lactate: the ugly duckling of energy metabolism. Nat Metab 2:566–571. https://doi.org/10.1038/s42255-020-0243-4

    Article  CAS  PubMed  Google Scholar 

  51. Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG, Guadagno J, Bergeron R, Cregan SP, Harper M-E, Park DS, Slack RS (2014) Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun 5:3550. https://doi.org/10.1038/ncomms4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1978) Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol Respir Environ Exerc Physiol 44:350–352. https://doi.org/10.1152/jappl.1978.44.3.350

    Article  CAS  PubMed  Google Scholar 

  53. Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB (2000) In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6:683–692. https://doi.org/10.1016/s1097-2765(00)00066-6

    Article  CAS  PubMed  Google Scholar 

  54. Lee SM, An WS (2016) New clinical criteria for septic shock: serum lactate level as new emerging vital sign. J Thorac Dis 8:1388–1390. https://doi.org/10.21037/jtd.2016.05.55

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chang JC (2019) Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J 17:10. https://doi.org/10.1186/s12959-019-0198-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Toffaletti JG (1991) Blood lactate: biochemistry, laboratory methods, and clinical interpretation. Crit Rev Clin Lab Sci 28:253–268. https://doi.org/10.3109/10408369109106865

    Article  CAS  PubMed  Google Scholar 

  57. Wei L, Zhou Y, Yao J, Qiao C, Ni T, Guo R, Guo Q, Lu N (2015) Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor. Oncotarget 6:16198–16214. https://doi.org/10.18632/oncotarget.3838

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ostroukhova M, Goplen N, Karim MZ, Michalec L, Guo L, Liang Q, Alam R (2012) The role of low-level lactate production in airway inflammation in asthma. Am J Physiol Lung Cell Mol Physiol 302:L300–L307. https://doi.org/10.1152/ajplung.00221.2011

    Article  CAS  PubMed  Google Scholar 

  59. Ravishankaran P, Shah AM, Bhat R (2011) Correlation of interleukin-6, serum lactate, and C-reactive protein to inflammation, complication, and outcome during the surgical course of patients with acute abdomen. J Interf Cytokine Res 31:685–690. https://doi.org/10.1089/jir.2011.0021

    Article  CAS  Google Scholar 

  60. Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ (2014) Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 146:1763–1774. https://doi.org/10.1053/j.gastro.2014.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637. https://doi.org/10.1097/CCM.0b013e31827e83af

    Article  PubMed  Google Scholar 

  62. Garrabou G, Morén C, López S, Tobías E, Cardellach F, Miró O, Casademont J (2012) The effects of sepsis on mitochondria. J Infect Dis 205:392–400. https://doi.org/10.1093/infdis/jir764

    Article  CAS  PubMed  Google Scholar 

  63. Singh Y, Gupta G, Sharma R, Matta Y, Mishra A, TDJA P, Dua K (2018) Embarking effect of ACE2-angiotensin 1–7/mas receptor Axis in benign prostate hyperplasia. Crit Rev Eukaryot Gene Expr 28:115–124

    Article  Google Scholar 

  64. Hatware KV, Sharma S, Patil K, Shete M, Karri S, Gupta G (2018) Evidence for gastroprotective, anti-inflammatory and antioxidant potential of methanolic extract of Cordia dichotoma leaves on indomethacin and stress induced gastric lesions in Wistar rats. Biomed Pharmacother 103:317–325

    Article  CAS  Google Scholar 

  65. Chen YJ, Mahieu NG, Huang X, Singh M, Crawford PA, Johnson SL, Gross RW, Schaefer J, Patti GJ (2016) Lactate metabolism is associated with mammalian mitochondria. Nat Chem Biol 12:937–943. https://doi.org/10.1038/nchembio.2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9. https://doi.org/10.1002/iub.573

    Article  CAS  PubMed  Google Scholar 

  67. Corrêa TD, Pereira AJ, Brandt S, Vuda M, Djafarzadeh S, Takala J, Jakob SM (2017) Time course of blood lactate levels, inflammation, and mitochondrial function in experimental sepsis. Crit Care 21:105. https://doi.org/10.1186/s13054-017-1691-4

    Article  PubMed  PubMed Central  Google Scholar 

  68. Garcia-Alvarez M, Marik P, Bellomo R (2014) Sepsis-associated hyperlactatemia. Crit Care (London, England) 18:503. https://doi.org/10.1186/s13054-014-0503-3

    Article  Google Scholar 

  69. van Hall G (2010) Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf) 199:499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x

    Article  CAS  Google Scholar 

  70. Frencken JF, van Vught LA, Peelen LM, Ong DSY, Klein Klouwenberg PMC, Horn J, Bonten MJM, van der Poll T, Cremer OL (2017) An unbalanced inflammatory cytokine response is not associated with mortality following sepsis: a prospective cohort study. Crit Care Med 45:e493–e499. https://doi.org/10.1097/ccm.0000000000002292

    Article  CAS  PubMed  Google Scholar 

  71. Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, Fine J, Krichevsky A, Delude RL, Angus DC (2007) Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med 167:1655–1663. https://doi.org/10.1001/archinte.167.15.1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful for the Deanship of Scientific Research at UMM AL-QURA UNIVERSITY for the financial support of our project (Project code 19-med-1-01-0046).

Author information

Authors and Affiliations

Authors

Contributions

WHA contributed to the study conception and design. Author has read and approved the final manuscript.

Corresponding author

Correspondence to Waleed Hassan Almalki.

Ethics declarations

Conflict of interest

Author hereby, have declared that the study was done without commercial or financial relationships which may be construed as a conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almalki, W.H. The sepsis induced defective aggravation of immune cells: a translational science underling chemico-biological interactions from altered bioenergetics and/or cellular metabolism to organ dysfunction. Mol Cell Biochem 476, 2337–2344 (2021). https://doi.org/10.1007/s11010-021-04066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04066-9

Keywords

Navigation