Skip to main content
Log in

Knockdown of TRAF6 inhibits chondrocytes apoptosis and inflammation by suppressing the NF-κB pathway in lumbar facet joint osteoarthritis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumor necrosis factor receptor-associated factor 6 (TRAF6), a regulator of NF-κB signaling, has been discovered recently to be probably related to osteoarthritis, while the function of TRAF6 in lumbar facet joint osteoarthritis(FJOA)still remains unknown. The aim of this study was to probe the specific function of TRAF6 in chondrocytes and its connection with the pathophysiology of FJOA. We found upregulation of TRAF6 in FJOA cartilage by western blot analysis. In vitro, we stimulated immortalized human chondrocytes by LPS to establish the cells apoptosis model. Western blot analysis demonstrated that levels of TRAF6 and cleaved caspase-3/8 in the chondrocyte injury model increased significantly. Knockdown of TRAF6 suppressed the expression of matrix metallopeptidase-13 (MMP-13) and interleukin-6 (IL-6) induced by LPS, and alleviated cell apoptosis. Meanwhile, western blot and immunofluorescent staining demonstrated that IκBα degradation and p65 nuclear transportation were also inhibited, revealing that knockdown of TRAF6 suppressed activation of the NF-κB pathway in LPS-induced chondrocytes apoptosis model. Collectively, our findings suggest that TRAF6 plays a crucial role in FJOA development by regulating NF-κB signaling pathway. Knockdown of TRAF6 may supply a potential therapeutic strategy for FJOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borenstein D (2004) Does osteoarthritis of the lumbar spine cause chronic low back pain? Curr Pain Headache Rep 8:512–517

    Article  Google Scholar 

  2. Goode AP, Carey TS, Jordan JM (2013) Low back pain and lumbar spine osteoarthritis: how are they related? Curr Rheumatol Rep. https://doi.org/10.1007/s11926-012-0305-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalichman L, Hunter DJ (2007) Lumbar facet joint osteoarthritis: a review. Semin Arthritis Rheum 37:69–80. https://doi.org/10.1016/j.semarthrit.2007.01.007

    Article  PubMed  Google Scholar 

  4. Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195

    Article  CAS  Google Scholar 

  5. Zeng G, Cui X, Liu Z, Zhao H, Zheng X, Zhang B, Xia C (2014) Disruption of phosphoinositide-specific phospholipases Cgamma1 contributes to extracellular matrix synthesis of human osteoarthritis chondrocytes. Int J Mol Sci 15:13236–13246. https://doi.org/10.3390/ijms150813236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC, Graves DT (2010) TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res 25:1604–1615. https://doi.org/10.1002/jbmr.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao SG, Zeng C, Li LJ, Luo W, Zhang FJ, Tian J, Cheng C, Tu M, Xiong YL, Jiang W, Xu M, Lei GH (2016) Correlation between senescence-associated beta-galactosidase expression in articular cartilage and disease severity of patients with knee osteoarthritis. Int J Rheum Dis 19:226–232. https://doi.org/10.1111/1756-185x.12096

    Article  CAS  PubMed  Google Scholar 

  8. Netzer C, Urech K, Hugle T, Benz RM, Geurts J, Scharen S (2016) Characterization of subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis. J Orthop Res 34:1475–1480. https://doi.org/10.1002/jor.23281

    Article  CAS  PubMed  Google Scholar 

  9. Lin FT, Lin VY, Lin VT, Lin WC (2016) TRIP6 antagonizes the recruitment of A20 and CYLD to TRAF6 to promote the LPA2 receptor-mediated TRAF6 activation. Cell Discov. https://doi.org/10.1038/celldisc.2015.48

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhao T, Tang X, Umeshappa CS, Ma H, Gao H, Deng Y, Freywald A, Xiang J (2016) Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NF-kappaB-Regulated Anti-Apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-Controlled DNA-Damage Response Pathways. J Cell Biochem 117:2138–2148. https://doi.org/10.1002/jcb.25520

    Article  CAS  PubMed  Google Scholar 

  11. Hyoudou K, Nishikawa M, Kobayashi Y, Kuramoto Y, Yamashita F, Hashida M (2007) Analysis of in vivo nuclear factor-kappaB activation during liver inflammation in mice: prevention by catalase delivery. Mol Pharmacol 71:446–453. https://doi.org/10.1124/mol.106.027169

    Article  CAS  PubMed  Google Scholar 

  12. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151. https://doi.org/10.1016/j.cyto.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Beutler B (2000) Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12:20–26. https://doi.org/10.1016/s0952-7915(99)00046-1

    Article  CAS  PubMed  Google Scholar 

  14. Qi J, Qiao Y, Wang P, Li S, Zhao W, Gao C (2012) microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Lett 586:1201–1207. https://doi.org/10.1016/j.febslet.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  15. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–1024. https://doi.org/10.1101/gad.13.8.1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YH, Wang H, Liu H, Sun Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris JS, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C, Binder CJ, Penninger JM (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133:235–249. https://doi.org/10.1016/j.cell.2008.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang J, Zhang J, Wu C, Guo X, Chen C, Bao G, Sun Y, Chen J, Xue P, Xu G, Cui Z (2018) Up-regulation of TRAF2 inhibits chondrocytes apoptosis in lumbar facet joint osteoarthritis. Biochem Biophys Res Commun 503:1659–1665. https://doi.org/10.1016/j.bbrc.2018.07.096

    Article  CAS  PubMed  Google Scholar 

  18. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14:13–29. https://doi.org/10.1016/j.joca.2005.07.014

    Article  CAS  PubMed  Google Scholar 

  19. Li F, Sun J, Huang S, Su G, Pi G (2018) LncRNA GAS5 Overexpression Reverses LPS-Induced Inflammatory Injury and Apoptosis Through Up-Regulating KLF2 Expression in ATDC5 Chondrocytes. Cell Physiol Biochem 45:1241–1251. https://doi.org/10.1159/000487455

    Article  CAS  PubMed  Google Scholar 

  20. Zhong JH, Li J, Liu CF, Liu N, Bian RX, Zhao SM, Yan SY, Zhang YB (2017) Effects of microRNA-146a on the proliferation and apoptosis of human osteoarthritis chondrocytes by targeting TRAF6 through the NF-kappaB signalling pathway. Biosci Rep. https://doi.org/10.1042/BSR20160578

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rasheed Z, Rasheed N, Abdulmonem WA, Khan MI (2019) MicroRNA-125b-5p regulates IL-1beta induced inflammatory genes via targeting TRAF6-mediated MAPKs and NF-kappaB signaling in human osteoarthritic chondrocytes. Sci Rep. https://doi.org/10.1038/s41598-019-42601-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li L, Wan G, Han B, Zhang Z (2018) Echinacoside alleviated LPS-induced cell apoptosis and inflammation in rat intestine epithelial cells by inhibiting the mTOR/STAT3 pathway. Biomed Pharmacother 104:622–628. https://doi.org/10.1016/j.biopha.2018.05.072

    Article  CAS  PubMed  Google Scholar 

  23. Tang J, Dong Q (2017) Knockdown of TREM-1 suppresses IL-1beta-induced chondrocyte injury via inhibiting the NF-kappaB pathway. Biochem Biophys Res Commun 482:1240–1245. https://doi.org/10.1016/j.bbrc.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  24. Gellhorn AC, Katz JN, Suri P (2013) Osteoarthritis of the spine: the facet joints. Nat Rev Rheumatol 9:216–224. https://doi.org/10.1038/nrrheum.2012.199

    Article  PubMed  Google Scholar 

  25. Beresford ZM, Kendall RW, Willick SE (2010) Lumbar facet syndromes. Curr Sports Med Rep 9:50–56. https://doi.org/10.1249/JSR.0b013e3181caba05

    Article  PubMed  Google Scholar 

  26. West C, McDermott MF (2017) Effects of microRNA-146a on the proliferation and apoptosis of human osteochondrocytes by targeting TRAF6 through the NF- kappaB signalling pathway. Biosci Rep. https://doi.org/10.1042/bsr20170180

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lv F, Huang Y, Lv W, Yang L, Li F, Fan J, Sun J (2017) MicroRNA-146a Ameliorates Inflammation via TRAF6/NF-kappaB Pathway in Intervertebral Disc Cells. Med Sci Monit 23:659–664

    Article  CAS  Google Scholar 

  28. Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y, Wu H (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418:443–447. https://doi.org/10.1038/nature00888

    Article  CAS  PubMed  Google Scholar 

  29. Wu H, Arron JR (2003) TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. BioEssays 25:1096–1105. https://doi.org/10.1002/bies.10352

    Article  CAS  PubMed  Google Scholar 

  30. Starczynowski DT, Lockwood WW, Delehouzee S, Chari R, Wegrzyn J, Fuller M, Tsao MS, Lam S, Gazdar AF, Lam WL, Karsan A (2011) TRAF6 is an amplified oncogene bridging the RAS and NF-kappaB pathways in human lung cancer. J Clin Invest 121:4095–4105. https://doi.org/10.1172/JCI58818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sundar R, Gudey SK, Heldin CH, Landstrom M (2015) TRAF6 promotes TGFbeta-induced invasion and cell-cycle regulation via Lys63-linked polyubiquitination of Lys178 in TGFbeta type I receptor. Cell Cycle 14:554–565. https://doi.org/10.4161/15384101.2014.990302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao JJ, Guo YQ, Yang DP, Xue X, Liu Q, Zhu LP, Yin S, Zhao ZM (2016) Chlojaponilactone B from Chloranthus japonicus: Suppression of Inflammatory Responses via Inhibition of the NF-kappaB Signaling Pathway. J Nat Prod 79:2257–2263. https://doi.org/10.1021/acs.jnatprod.6b00355

    Article  CAS  PubMed  Google Scholar 

  33. Arch RH, Gedrich RW, Thompson CB (1998) Tumor necrosis factor receptor-associated factors (TRAFs)–a family of adapter proteins that regulates life and death. Genes Dev 12:2821–2830. https://doi.org/10.1101/gad.12.18.2821

    Article  CAS  PubMed  Google Scholar 

  34. Bradley JR, Pober JS (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20:6482–6491. https://doi.org/10.1038/sj.onc.1204788

    Article  CAS  PubMed  Google Scholar 

  35. Malinin NL, Boldin MP, Kovalenko AV, Wallach D (1997) MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385:540–544. https://doi.org/10.1038/385540a0

    Article  CAS  PubMed  Google Scholar 

  36. Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IkappaB kinase. Cell 90:373–383. https://doi.org/10.1016/s0092-8674(00)80344-x

    Article  CAS  PubMed  Google Scholar 

  37. May MJ, Ghosh S (1998) Signal transduction through NF-kappa B. Immunol Today 19:80–88

    Article  CAS  Google Scholar 

  38. Davies CC, Mak TW, Young LS, Eliopoulos AG (2005) TRAF6 is required for TRAF2-dependent CD40 signal transduction in nonhemopoietic cells. Mol Cell Biol 25:9806–9819. https://doi.org/10.1128/MCB.25.22.9806-9819.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52. https://doi.org/10.1016/j.tibs.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  40. Rowland SL, Tremblay MM, Ellison JM, Stunz LL, Bishop GA, Hostager BS (2007) A novel mechanism for TNFR-associated factor 6-dependent CD40 signaling. J Immunol 179:4645–4653. https://doi.org/10.4049/jimmunol.179.7.4645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Clinical Medicine Project of Nantong University (2019JQ004), Nantong 226 High-level Talents Project (2018 III-341), Jiangsu Province Young Medical Key Talents Project of China (QNRC2016407), Youth Project of Nantong City Health and Family Planning Commission (QA2020007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyu Sun or Zhiming Cui.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhang, J., Wu, C. et al. Knockdown of TRAF6 inhibits chondrocytes apoptosis and inflammation by suppressing the NF-κB pathway in lumbar facet joint osteoarthritis. Mol Cell Biochem 476, 1929–1938 (2021). https://doi.org/10.1007/s11010-021-04048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04048-x

Keywords

Navigation