Skip to main content
Log in

Statins decrease the expression of c-Myc protein in cancer cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Statins are potent inhibitors of the mevalonate/cholesterol biosynthetic pathway and are widely prescribed for the prevention of cardiovascular diseases. Here, we carried out a comprehensive analysis of the effects of three statins, simvastatin, atorvastatin, and lovastatin, on six different cancer cell lines that include a P-glycoprotein-expressing, multidrug resistant variant of an ovarian cancer cell line. Incubation of all cancer cell lines with statins resulted in suppression of cell proliferation without inducing apoptotic cell death. The cell proliferation arrest could be reversed upon transfer of cells to statin-free growth media as well as by the supplementation of the growth media with mevalonate. Further analysis suggested that statins induced cell cycle arrest at G0/G1 phase in four cancer cell lines and the loss of c-Myc protein in three cancer cell lines. The c-Myc expression and the progression of cell division cycle were restored upon the addition of mevalonate to the culture media containing statins. Finally, cells incubated with statins contained an increased level of phosphorylated histone H2AX, an observation previously correlated to cellular senescence. Together, these data demonstrate that statins inhibit the mevalonate pathway which is tightly coupled to oxidative branch of the pentose phosphate pathway, c-Myc expression, cell division cycle progression, and cellular senescence. Implications of these observations in the application of statins as cancer therapeutics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Casey PJ, Solski PA, Der CJ, Buss JE (1989) p21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 86:8323–8327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Casey PJ, Thissen JA, Moomaw JF (1991) Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci USA 88:8631–8635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46. https://doi.org/10.1016/j.cell.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  4. Siperstein MD, Fagan VM (1964) Deletion of the cholesterol-negative feedback system in liver tumors. Cancer Res 24:1108–1115

    CAS  PubMed  Google Scholar 

  5. Siperstein MD, Fagan VM, Morris HP (1966) Further studies on the deletion of the cholesterol feedback system in hepatomas. Cancer Res 26:7–11

    CAS  PubMed  Google Scholar 

  6. Buchwald H (1992) Cholesterol inhibition, cancer, and chemotherapy. Lancet 339:1154–1156

    Article  CAS  PubMed  Google Scholar 

  7. Graaf MR, Beiderbeck AB, Egberts AC, Richel DJ, Guchelaar HJ (2004) The risk of cancer in users of statins. J Clin Oncol 22:2388–2394. https://doi.org/10.1200/JCO.2004.02.027

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Li C, Tao H, Cheng Y, Han L, Li X, Hu Y (2013) Statin use and risk of lung cancer: a meta-analysis of observational studies and randomized controlled trials. PLoS ONE 8:e77950. https://doi.org/10.1371/journal.pone.0077950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bansal D, Undela K, D’Cruz S, Schifano F (2012) Statin use and risk of prostate cancer: a meta-analysis of observational studies. PLoS ONE 7:e46691. https://doi.org/10.1371/journal.pone.0046691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cauley JA, McTiernan A, Rodabough RJ, LaCroix A, Bauer DC, Margolis KL, Paskett ED, Vitolins MZ, Furberg CD, Chlebowski RT, Women’s Health Initiative Research G (2006) Statin use and breast cancer: prospective results from the Women’s Health Initiative. J Natl Cancer Inst 98:700–707. https://doi.org/10.1093/jnci/djj188

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. N Engl J Med 367:1792–1802. https://doi.org/10.1056/NEJMoa1201735

    Article  CAS  PubMed  Google Scholar 

  12. Cholesterol Treatment Trialists C, Emberson JR, Kearney PM, Blackwell L, Newman C, Reith C, Bhala N, Holland L, Peto R, Keech A, Collins R, Simes J, Baigent C (2012) Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PLoS ONE 7:e29849. https://doi.org/10.1371/journal.pone.0029849

    Article  CAS  Google Scholar 

  13. Hoffmeister M, Jansen L, Rudolph A, Toth C, Kloor M, Roth W, Blaker H, Chang-Claude J, Brenner H (2015) Statin use and survival after colorectal cancer: the importance of comprehensive confounder adjustment. J Natl Cancer Inst 107:djv045. https://doi.org/10.1093/jnci/djv045

    Article  CAS  PubMed  Google Scholar 

  14. Poynter JN, Gruber SB, Higgins PD, Almog R, Bonner JD, Rennert HS, Low M, Greenson JK, Rennert G (2005) Statins and the risk of colorectal cancer. N Engl J Med 352:2184–2192. https://doi.org/10.1056/NEJMoa043792

    Article  CAS  PubMed  Google Scholar 

  15. Maisonneuve P, Lowenfels AB (2005) Statins and the risk of colorectal cancer. N Engl J Med 353:952–954

    Article  CAS  PubMed  Google Scholar 

  16. Setoguchi S, Avorn J, Schneeweiss S (2005) Statins and the risk of colorectal cancer. N Engl J Med 353:952–954. https://doi.org/10.1056/NEJMc051738

    Article  CAS  PubMed  Google Scholar 

  17. Welch HG (2005) Statins and the risk of colorectal cancer. N Engl J Med 353:952–954

    Article  PubMed  Google Scholar 

  18. Newman TB, Hulley SB (1996) Carcinogenicity of lipid-lowering drugs. JAMA 275:55–60

    Article  CAS  PubMed  Google Scholar 

  19. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Meinders AE, Norrie J, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey C, Westendorp RG, PsgPSoPitEa R (2002) Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360:1623–1630

    Article  CAS  PubMed  Google Scholar 

  20. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 335:1001–1009. https://doi.org/10.1056/NEJM199610033351401

    Article  CAS  PubMed  Google Scholar 

  21. Kumar AS, Benz CC, Shim V, Minami CA, Moore DH, Esserman LJ (2008) Estrogen receptor-negative breast cancer is less likely to arise among lipophilic statin users. Cancer Epidemiol Biomark Prev 17:1028–1033. https://doi.org/10.1158/1055-9965.EPI-07-0726

    Article  CAS  Google Scholar 

  22. Caporaso NE (2012) Statins and cancer-related mortality–let’s work together. N Engl J Med 367:1848–1850. https://doi.org/10.1056/NEJMe1210002

    Article  CAS  PubMed  Google Scholar 

  23. Alizadeh J, Zeki AA, Mirzaei N, Tewary S, Rezaei Moghadam A, Glogowska A, Nagakannan P, Eftekharpour E, Wiechec E, Gordon JW, Xu FY, Field JT, Yoneda KY, Kenyon NJ, Hashemi M, Hatch GM, Hombach-Klonisch S, Klonisch T, Ghavami S (2017) Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci Rep 7:44841. https://doi.org/10.1038/srep44841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khanzada UK, Pardo OE, Meier C, Downward J, Seckl MJ, Arcaro A (2006) Potent inhibition of small-cell lung cancer cell growth by simvastatin reveals selective functions of Ras isoforms in growth factor signalling. Oncogene 25:877–887. https://doi.org/10.1038/sj.onc.1209117

    Article  CAS  PubMed  Google Scholar 

  25. Park C, Lee I, Kang WK (2001) Lovastatin-induced E2F–1 modulation and its effect on prostate cancer cell death. Carcinogenesis 22:1727–1731

    Article  CAS  PubMed  Google Scholar 

  26. Rao S, Porter DC, Chen X, Herliczek T, Lowe M, Keyomarsi K (1999) Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Natl Acad Sci USA 96:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez CA, Rodriguez E, Varela E, Zapata E, Paez A, Masso FA, Montano LF, Loopez-Marure R (2008) Statin-induced inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic and necrotic cell death mediated by an enhanced oxidative stress. Cancer Invest 26:698–707. https://doi.org/10.1080/07357900701874658

    Article  CAS  PubMed  Google Scholar 

  28. Kotamraju S, Williams CL, Kalyanaraman B (2007) Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res 67:7386–7394. https://doi.org/10.1158/0008-5472.CAN-07-0993

    Article  CAS  PubMed  Google Scholar 

  29. Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, Baehner F, Kumar AS, Adduci K, Marx C, Petricoin EF, Liotta LA, Winters M, Benz S, Benz CC (2006) Breast cancer growth prevention by statins. Cancer Res 66:8707–8714. https://doi.org/10.1158/0008-5472.CAN-05-4061

    Article  CAS  PubMed  Google Scholar 

  30. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R, Barsotti A, Chicas A, Li W, Polotskaia A, Bissell MJ, Osborne TF, Tian B, Lowe SW, Silva JM, Borresen-Dale AL, Levine AJ, Bargonetti J, Prives C (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–258. https://doi.org/10.1016/j.cell.2011.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rao PS, Govindarajan R, Mallya KB, West W, Rao US (2005) Characterization of a new antibody raised against the NH2 terminus of P-glycoprotein. Clin Cancer Res 11:5833–5839. https://doi.org/10.1158/1078-0432.CCR-04-2182

    Article  CAS  PubMed  Google Scholar 

  32. Satelli A, Rao PS, Thirumala S, Rao US (2011) Galectin-4 functions as a tumor suppressor of human colorectal cancer. Int J Cancer 129:799–809. https://doi.org/10.1002/ijc.25750

    Article  CAS  PubMed  Google Scholar 

  33. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR (1991) Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51:2515–2520

    CAS  PubMed  Google Scholar 

  34. Satelli A, Rao PS, Gupta PK, Lockman PR, Srivenugopal KS, Rao US (2008) Varied expression and localization of multiple galectins in different cancer cell lines. Oncol Rep 19:587–594

    CAS  PubMed  Google Scholar 

  35. Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel) 12:12347–12360. https://doi.org/10.3390/s120912347

    Article  CAS  Google Scholar 

  36. Rao PS, Satelli A, Moridani M, Jenkins M, Rao US (2012) Luteolin induces apoptosis in multidrug resistant cancer cells without affecting the drug transporter function: involvement of cell line-specific apoptotic mechanisms. Int J Cancer 130:2703–2714. https://doi.org/10.1002/ijc.26308

    Article  CAS  PubMed  Google Scholar 

  37. Rao PS, Endicott R, Mullins R, Rao US (2018) A 6-week laboratory research rotation in pharmacogenomics: a model for preparing pharmacy students to practice precision medicine. Pharmacogenomics J. https://doi.org/10.1038/s41397-018-0019-3

    Article  PubMed  Google Scholar 

  38. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354. https://doi.org/10.1016/j.tibs.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farrell AS, Sears RC (2014) MYC degradation. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a014365

    Article  PubMed  PubMed Central  Google Scholar 

  40. Skouteris GG, Schroder CH (1996) C-myc is required for the G0/G1-S transition of primary hepatocytes stimulated with a deleted form of hepatocyte growth factor. Biochem J 316(Pt 3):879–886. https://doi.org/10.1042/bj3160879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  42. Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV, Blagosklonny MV (2009) Pseudo-DNA damage response in senescent cells. Cell Cycle 8:4112–4118. https://doi.org/10.4161/cc.8.24.10215

    Article  CAS  PubMed  Google Scholar 

  43. Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104:13028–13033. https://doi.org/10.1073/pnas.0701953104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683. https://doi.org/10.1038/nature07260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kidera Y, Tsubaki M, Yamazoe Y, Shoji K, Nakamura H, Ogaki M, Satou T, Itoh T, Isozaki M, Kaneko J, Tanimori Y, Yanae M, Nishida S (2010) Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil-containing protein kinase pathway. J Exp Clin Cancer Res 29:127. https://doi.org/10.1186/1756-9966-29-127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masko EM, Alfaqih MA, Solomon KR, Barry WT, Newgard CB, Muehlbauer MJ, Valilis NA, Phillips TE, Poulton SH, Freedland AR, Sun S, Dambal SK, Sanders SE, Macias E, Freeman MR, Dewhirst MW, Pizzo SV, Freedland SJ (2017) Evidence for feedback regulation following cholesterol lowering therapy in a prostate cancer xenograft model. Prostate 77:446–457. https://doi.org/10.1002/pros.23282

    Article  CAS  PubMed  Google Scholar 

  47. Ishikawa T, Hosaka YZ, Beckwitt C, Wells A, Oltvai ZN, Warita K (2018) Concomitant attenuation of HMG-CoA reductase expression potentiates the cancer cell growth-inhibitory effect of statins and expands their efficacy in tumor cells with epithelial characteristics. Oncotarget 9:29304–29315. https://doi.org/10.18632/oncotarget.25448

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the College Administration for the interest and financial support.

Funding

This research was supported by the generous internal funds from the College.

Author information

Authors and Affiliations

Authors

Contributions

Both authors were involved in the design and performing the experiments. USR wrote the manuscript, and PSR verified the data and edited the manuscript.

Corresponding author

Correspondence to U. Subrahmanyeswara Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.S., Rao, U.S. Statins decrease the expression of c-Myc protein in cancer cell lines. Mol Cell Biochem 476, 743–755 (2021). https://doi.org/10.1007/s11010-020-03940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03940-2

Keywords

Navigation