Skip to main content
Log in

MondoA:MLX complex regulates glucose-dependent gene expression and links to circadian rhythm in liver and brain of the freeze-tolerant wood frog, Rana sylvatica

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The wood frog, Rana sylvatica, is one of only a few vertebrate species that display natural freeze tolerance. Frogs survive the freezing of about two-thirds of their body water as extracellular ice over the winter months. Multiple adaptations support freeze tolerance including metabolic rate depression and the production of huge amounts of glucose (often 200 mM or more) as a cryoprotectant that protects cells from freeze damage. To understand how high glucose levels affect gene expression, we studied MondoA, a glucose sensing transcription factor, and its partner MLX (Max-like protein) to assess their ability to modulate the expression of genes involved in glucose metabolism and circadian rhythm. Wood frog liver and brain tissues were analyzed, assessing protein levels, nuclear distribution, and DNA binding activity of MondoA:MLX during freezing (24 h at − 2.5 °C) and subsequent thawing (8 h returned to 5 °C), as compared with 5 °C controls. Downstream targets of MondoA:MLX were also evaluated: TXNIP (thioredoxin interacting protein), ARRDC4 (arrestin domain containing 4), HK-2 (hexokinase-2), PFKFB-3 (6-phosphofructo-2-kinase isozyme 3) and KLF-10 (Kruppel-like factor-10). Both KLF-10 and PFKFB-3 are also involved in circadian dependant regulation which was also explored in the current study via analysis of BMAL-1 (aryl hydrocarbon receptor nuclear translocator-like protein 1) and CLOCK (circadian locomotor output cycles kaput) proteins. Our data establish the MondoA-MLX complex as active under the hyperglycemic conditions in liver to regulate glucose metabolism and may also link to circadian rhythm in liver via KLF-10 and PFKFB-3 but not in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Storey KB, Storey JM (1996) Natural freezing survival in animals. Annu Rev Ecol Syst 27:365–386. https://doi.org/10.1146/annurev.ecolsys.27.1.365

    Article  Google Scholar 

  2. Storey KB, Storey JM (2017) Molecular physiology of freeze tolerance in vertebrates. Physiol Rev 97:623–665. https://doi.org/10.1152/physrev.00016.2016

    Article  CAS  PubMed  Google Scholar 

  3. Layne J, Lee R (1995) Adaptations of frogs to survive freezing. Clim Res 5:53–59. https://doi.org/10.3354/cr005053

    Article  Google Scholar 

  4. Costanzo JP, Lee RE (2013) Avoidance and tolerance of freezing in ectothermic vertebrates. J Exp Biol 216:1961–1967. https://doi.org/10.1242/jeb.070268

    Article  PubMed  Google Scholar 

  5. Costanzo JP, Lee RE (1996) Mini-review: ice nucleation in freeze-tolerant vertebrates. Cryoletters 17(2):111–118

    Google Scholar 

  6. Storey KB, Storey JM (1984) Biochemical adaption for freezing tolerance in the wood frog, Rana sylvatica. J Comp Physiol B 155:29–36. https://doi.org/10.1007/BF00688788

    Article  CAS  Google Scholar 

  7. Rosendale AJ, Lee RE, Costanzo JP (2014) Effect of physiological stress on expression of glucose transporter 2 in liver of the wood frog, Rana sylvatica. J Exp Zool A 321:566–576. https://doi.org/10.1002/jez.1885

    Article  CAS  Google Scholar 

  8. Storey KB (2000) Vertebrate freeze tolerance: molecular studies of signal transduction and gene expression. In: Heldmaier G, Klaus S, Klingenspor M (eds) Life in the cold. Springer, Berlin, pp 527–539

    Chapter  Google Scholar 

  9. Storey K, Storey J (2004) Physiology, biochemistry, and molecular biology of vertebrate freeze tolerance. In: Benson E, Fuller B, Lane N (eds) Life in the frozen state. CRC Press, Boca Raton, pp 243–274

    Chapter  Google Scholar 

  10. Zhang J, Storey KB (2013) Akt signaling and freezing survival in the wood frog, Rana sylvatica. Biochim Biophys Acta Gen Subj 1830:4828–4837. https://doi.org/10.1016/j.bbagen.2013.06.020

    Article  CAS  Google Scholar 

  11. Lambert SA, Jolma A, Campitelli LF et al (2018) The human transcription factors. Cell 172:650–665. https://doi.org/10.1016/j.cell.2018.01.029

    Article  CAS  Google Scholar 

  12. Brand LH, Kirchler T, Hummel S et al (2010) DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro. Plant Methods 6:25. https://doi.org/10.1186/1746-4811-6-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Attar R, Storey KB (2018) Effects of anoxic exposure on the nuclear factor of activated T cell (NFAT) transcription factors in the stress-tolerant wood frog. Cell Biochem Funct 36:420–430. https://doi.org/10.1002/cbf.3362

    Article  CAS  PubMed  Google Scholar 

  14. Sans CL, Satterwhite DJ, Stoltzman CA et al (2006) MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 26:4863–4871. https://doi.org/10.1128/MCB.00657-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilde BR, Ayer DE (2015) Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer 113:1529–1533. https://doi.org/10.1038/bjc.2015.360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richards P, Rachdi L, Oshima M et al (2018) MondoA is an essential glucose-responsive transcription factor in human pancreatic β-cells. Diabetes 67:461–472. https://doi.org/10.2337/db17-0595

    Article  CAS  PubMed  Google Scholar 

  17. Stoltzman CA, Peterson CW, Breen KT et al (2008) Glucose sensing by MondoA: Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci USA 105:6912–6917. https://doi.org/10.1073/pnas.0712199105

    Article  PubMed  Google Scholar 

  18. Vazquez Illanes MD, Storey KB (1993) 6-Phosphofructo-2-kinase and control of cryoprotectant synthesis in freeze tolerant frogs. Biochim Biophys Acta 1158:29–32. https://doi.org/10.1016/0304-4165(93)90092-m

    Article  CAS  PubMed  Google Scholar 

  19. Mattila J, Hietakangas V (2017) Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics 207:1231–1253. https://doi.org/10.1534/genetics.117.199885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalsbeek A, la Fleur S, Fliers E (2014) Circadian control of glucose metabolism. Mol Metab 3:372–383. https://doi.org/10.1016/j.molmet.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qian J, Scheer FAJL (2016) Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol Metab 27:282–293. https://doi.org/10.1016/j.tem.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gachon F, Loizides-Mangold U, Petrenko V, Dibner C (2017) Glucose homeostasis: regulation by peripheral circadian clocks in rodents and humans. Endocrinology 158:1074–1084. https://doi.org/10.1210/en.2017-00218

    Article  CAS  PubMed  Google Scholar 

  23. Lande-Diner L, Boyault C, Kim JY, Weitz CJ (2013) A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc Natl Acad Sci USA 110:16021–16026. https://doi.org/10.1073/pnas.1305980110

    Article  PubMed  Google Scholar 

  24. Farhud D, Aryan Z (2018) Circadian rhythm, lifestyle and health: a narrative review. Iran J Public Health 47:1068–1076

    PubMed  PubMed Central  Google Scholar 

  25. Ahn B, Wan S, Jaiswal N et al (2019) MondoA drives muscle lipid accumulation and insulin resistance. JCI Insight 4:1–16. https://doi.org/10.1172/jci.insight.129119

    Article  Google Scholar 

  26. Havula E, Teesalu M, Hyötyläinen T et al (2013) Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila. PLoS Genet 9:e1003438. https://doi.org/10.1371/journal.pgen.1003438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guillaumond F, Grechez-Cassiau A, Subramaniam M et al (2010) Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol Cell Biol 30:3059–3070. https://doi.org/10.1128/MCB.01141-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Krüppel-like transcription factors. Genome Biol 4(2):206

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen L, Zhao J, Tang Q et al (2016) PFKFB3 control of cancer growth by responding to circadian clock outputs. Sci Rep 6:24324. https://doi.org/10.1038/srep24324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krivoruchko A, Storey KB (2014) Activation of the carbohydrate response element binding protein (ChREBP) in response to anoxia in the turtle Trachemys scripta elegans. Biochim Biophys Acta Gen Subj 1840:3000–3005. https://doi.org/10.1016/j.bbagen.2014.06.001

    Article  CAS  Google Scholar 

  31. Gerber VEM, Wijenayake S, Storey KB (2016) Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica). PeerJ 4:e1834. https://doi.org/10.7717/peerj.1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eaton SL, Roche SL, Llavero Hurtado M et al (2013) Total protein analysis as a reliable loading control for quantitative fluorescent western blotting. PLoS ONE 8:e72457. https://doi.org/10.1371/journal.pone.0072457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Storey KB (2016) RBioplot: an easy-to-use R pipeline for automated statistical analysis and data visualization in molecular biology and biochemistry. PeerJ 4:e2436. https://doi.org/10.7717/peerj.2436

    Article  PubMed  PubMed Central  Google Scholar 

  34. Storey KB, Storey JM (1986) Freeze tolerant frogs: cryoprotectants and tissue metabolism during freeze–thaw cycles. Can J Zool 64:49–56. https://doi.org/10.1139/z86-008

    Article  CAS  Google Scholar 

  35. Kaadige MR, Yang J, Wilde BR, Ayer DE (2015) MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Mol Cell Biol 35:101–110. https://doi.org/10.1128/MCB.00636-14

    Article  CAS  PubMed  Google Scholar 

  36. Hadj-Moussa H, Storey KB (2018) Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains. Cell Mol Life Sci 75:3635–3647. https://doi.org/10.1007/s00018-018-2821-0

    Article  CAS  PubMed  Google Scholar 

  37. O’Donnell AF, Schmidt MC (2019) AMPK-mediated regulation of alpha-arrestins and protein trafficking. Int J Mol Sci 20:515. https://doi.org/10.3390/ijms20030515

    Article  CAS  PubMed Central  Google Scholar 

  38. Han K-S, Ayer DE (2013) MondoA senses adenine nucleotides: transcriptional induction of thioredoxin-interacting protein. Biochem J 453:209–218. https://doi.org/10.1042/BJ20121126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chutkow WA, Patwari P, Yoshioka J, Lee RT (2008) Thioredoxin-interacting protein (Txnip) is a critical regulator of hepatic glucose production. J Biol Chem 283:2397–2406. https://doi.org/10.1074/jbc.M708169200

    Article  CAS  PubMed  Google Scholar 

  40. Alhawiti NM, Al Mahri S, Aziz MA et al (2017) TXNIP in metabolic regulation: physiological role and therapeutic outlook. Curr Drug Targets 18:1095–1103. https://doi.org/10.2174/1389450118666170130145514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. King PA, Rosholt MN, Storey KB (1995) Seasonal changes in plasma membrane glucose transporters enhance cryoprotectant distribution in the freeze-tolerant wood frog. Can J Zool 73:1–9. https://doi.org/10.1139/z95-001

    Article  CAS  Google Scholar 

  42. Dotimas JR, Lee AW, Schmider AB et al (2016) Diabetes regulates fructose absorption through thioredoxin-interacting protein. eLife 5:e18313. https://doi.org/10.7554/eLife.18313

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nasoohi S, Ismael S, Ishrat T (2018) Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: regulation and implication. Mol Neurobiol 55:7900–7920. https://doi.org/10.1007/s12035-018-0917-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou Y, Wang Y, He Q et al (2018) Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res 336:32–39. https://doi.org/10.1016/j.bbr.2017.06.027

    Article  CAS  PubMed  Google Scholar 

  45. Wu C-W, Tessier SN, Storey KB (2018) Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica. Cell Stress Chaperones 23:1205–1217. https://doi.org/10.1007/s12192-018-0926-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mochizuki M, Kwon Y-W, Yodoi J, Masutani H (2009) Thioredoxin regulates cell cycle via the ERK1/2-Cyclin D1 Pathway. Antioxid Redox Signal 11:2957–2971. https://doi.org/10.1089/ars.2009.2623

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Storey KB (2012) Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica. Cell Cycle 11:1727–1742. https://doi.org/10.4161/cc.19880

    Article  CAS  PubMed  Google Scholar 

  48. Patwari P, Lee RT (2012) An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab 23:216–222. https://doi.org/10.1016/j.tem.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kolar D, Gresikova M, Waskova-Arnostova P et al (2017) Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult. Mol Cell Biochem 432:99–108. https://doi.org/10.1007/s11010-017-3001-5

    Article  CAS  PubMed  Google Scholar 

  50. Joanisse DR, Storey KB (1996) Oxidative damage and antioxidants in Rana sylvatica, the freeze-tolerant wood frog. Am J Physiol Integr Comp Physiol 271:R545–R553. https://doi.org/10.1152/ajpregu.1996.271.3.R545

    Article  CAS  Google Scholar 

  51. Peng H, Zhu Y, Goldberg J et al (2019) DNA methylation of five core circadian genes jointly contributes to glucose metabolism: a gene-set analysis in monozygotic twins. Front Genet 10:1–7. https://doi.org/10.3389/fgene.2019.00329

    Article  CAS  Google Scholar 

  52. Aschoff J, Fatranska M, Giedke H et al (1971) Human circadian rhythms in continuous darkness: entrainment by social cues. Science (80-) 171:213–215. https://doi.org/10.1126/science.171.3967.213

    Article  CAS  Google Scholar 

  53. Dibner C, Schibler U (2015) Circadian timing of metabolism in animal models and humans. J Intern Med 277:513–527. https://doi.org/10.1111/joim.12347

    Article  CAS  PubMed  Google Scholar 

  54. Memon A, Lee W (2018) KLF10 as a tumor suppressor gene and its TGF-β signaling. Cancers (Basel) 10:161. https://doi.org/10.3390/cancers10060161

    Article  CAS  Google Scholar 

  55. Papadakis KA, Krempski J, Reiter J et al (2015) Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8+ T lymphocytes. Am J Physiol 308:C362–C371. https://doi.org/10.1152/ajpcell.00262.2014

    Article  CAS  Google Scholar 

  56. Aguilar OA, Hadj-Moussa H, Storey KB (2016) Regulation of SMAD transcription factors during freezing in the freeze tolerant wood frog, Rana sylvatica. Comp Biochem Physiol B 201:64–71. https://doi.org/10.1016/j.cbpb.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  57. Michael AK, Fribourgh JL, Chelliah Y et al (2017) Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Proc Natl Acad Sci USA 114:1560–1565. https://doi.org/10.1073/pnas.1615310114

    Article  CAS  PubMed  Google Scholar 

  58. Mehra A, Baker CL, Loros JJ, Dunlap JC (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34:483–490. https://doi.org/10.1016/j.tibs.2009.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Subramaniam M, Hawse JR, Rajamannan NM et al (2010) Functional role of KLF10 in multiple disease processes. BioFactors 36:8–18. https://doi.org/10.1002/biof.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Storey KB, Storey JM (2019) Mitochondria, metabolic control and microRNA: advances in understanding amphibian freeze tolerance. BioFactors. https://doi.org/10.1002/biof.1511

    Article  PubMed  Google Scholar 

  61. Greenway SC, Storey KB (2000) Activation of mitogen-activated protein kinases during natural freezing and thawing in the wood frog. Mol Cell Biochem 209:29–37

    Article  CAS  PubMed  Google Scholar 

  62. Kennaway DJ, Varcoe TJ, Voultsios A, Boden MJ (2013) Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS ONE 8:e65255. https://doi.org/10.1371/journal.pone.0065255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research was supported by a Discovery Grant to KBS from the Natural Sciences and Engineering Research Council of Canada (#6793); KBS holds the Canada Research Chair in Molecular Physiology. The authors thank J.M. Storey for editorial review of manuscript, and R. Al-Attar for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Storey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Storey, K.B. MondoA:MLX complex regulates glucose-dependent gene expression and links to circadian rhythm in liver and brain of the freeze-tolerant wood frog, Rana sylvatica. Mol Cell Biochem 473, 203–216 (2020). https://doi.org/10.1007/s11010-020-03820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03820-9

Keywords

Navigation