Skip to main content
Log in

Long non-coding RNA LINC00243 promotes proliferation and glycolysis in non-small cell lung cancer cells by positively regulating PDK4 through sponging miR-507

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is the main subtype of lung cancer. The overall survival of NSCLC patients is relatively low even after various treatments. Accumulating evidence demonstrated that long non-coding RNA (LncRNA) plays crucial roles in different biological process. However, the role of a novel LncRNA, LINC00243, in NSCLC remains unclear. We aimed to explore the biological role of LINC00243 in NSCLC. The mRNA and protein levels were determined by real-time PCR and western blot, respectively. Cell viability in vitro was detected by Cell Counting Kit-8 (CCK-8) assay and colony-formation assay. Reporter assay was used to detect the interactions between molecules, and the interaction was assessed by RNA pull-down assay. LINC00243 expression increased in human NSCLC tissues and associated with poor prognosis of NSCLC patients. LINC00243 knockdown inhibited proliferation and glycolysis of NSCLC cells. Mechanically, LINC00243 acted as a molecular sponge for miR-507, and miR-507 reversed the effect of LINC00243 on promoting proliferation and glycolysis of NSCLC cells. Moreover, LINC00243 modulated expression of endogenous miR-507-targeted PDK4. LINC00243 promotes proliferation and glycolysis in NSCLC cells by positively regulating PDK4 through sponging miR-507. LINC00243 could be the potential target for NSCLC treatment clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5:288–300. https://doi.org/10.21037/tlcr.2016.06.07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380. https://doi.org/10.1056/NEJMra0802714

    Article  CAS  PubMed  Google Scholar 

  5. Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, Yahaya BH (2017) Targeting lung cancer stem cells: research and clinical impacts. Front Oncol 7:80. https://doi.org/10.3389/fonc.2017.00080

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lo Russo G, Proto C, Garassino MC (2016) Afatinib in the treatment of squamous non-small cell lung cancer: a new frontier or an old mistake? Transl Lung Cancer Res 5:110–114. https://doi.org/10.3978/j.issn.2218-6751.2015.12.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kazandjian D, Suzman DL, Blumenthal G, Mushti S, He K, Libeg M, Keegan P, Pazdur R (2016) FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist 21:634–642. https://doi.org/10.1634/theoncologist.2015-0507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Antonia S, Goldberg SB, Balmanoukian A, Chaft JE, Sanborn RE, Gupta A, Narwal R, Steele K, Gu Y, Karakunnel JJ, Rizvi NA (2016) Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol 17:299–308. https://doi.org/10.1016/s1470-2045(15)00544-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fenchel K, Sellmann L, Dempke WC (2016) Overall survival in non-small cell lung cancer-what is clinically meaningful? Transl Lung Cancer Res 5:115–119. https://doi.org/10.3978/j.issn.2218-6751.2016.01.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi SY, Collins CC, Gout PW, Wang Y (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230:350–355. https://doi.org/10.1002/path.4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopez-Saez JF, de la Torre C, Pincheira J, Gimenez-Martin G (1998) Cell proliferation and cancer. Histol Histopathol 13:1197–1214. https://doi.org/10.14670/hh-13.1197

    Article  CAS  PubMed  Google Scholar 

  12. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  13. Bellone M, Calcinotto A, Filipazzi P, De Milito A, Fais S, Rivoltini L (2013) The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncoimmunology 2:e22058. https://doi.org/10.4161/onci.22058

    Article  PubMed  PubMed Central  Google Scholar 

  14. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899. https://doi.org/10.1158/0008-5472.Can-03-2904

    Article  CAS  PubMed  Google Scholar 

  15. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  16. Diermeier SD, Chang KC, Freier SM, Song J, El Demerdash O, Krasnitz A, Rigo F, Bennett CF, Spector DL (2016) Mammary tumor-associated RNAs impact tumor cell proliferation, invasion, and migration. Cell Rep 17:261–274. https://doi.org/10.1016/j.celrep.2016.08.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guan YJ, Ma JY, Song W (2019) Identification of circRNA-miRNA-mRNA regulatory network in gastric cancer by analysis of microarray data. Cancer Cell Int 19:183. https://doi.org/10.1186/s12935-019-0905-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899. https://doi.org/10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  20. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669. https://doi.org/10.1534/genetics.112.146704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. https://doi.org/10.1146/annurev-cellbio-092910-154237

    Article  CAS  PubMed  Google Scholar 

  22. Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P (2012) K-ras(G12 V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22:399–412. https://doi.org/10.1038/cr.2011.145

    Article  CAS  PubMed  Google Scholar 

  23. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314. https://doi.org/10.1146/annurev-pathol-012513-104715

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Qian Y, Gao M (2019) Overexpression of PDK4 is associated with cell proliferation, drug resistance and poor prognosis in ovarian cancer. Cancer Manag Res 11:251–262. https://doi.org/10.2147/cmar.S185015

    Article  CAS  PubMed  Google Scholar 

  25. Deng YH, Deng ZH, Hao H, Wu XL, Gao H, Tang SH, Tang H (2018) MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp Cell Res 373:171–179. https://doi.org/10.1016/j.yexcr.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  26. Li G, Li M, Hu J, Lei R, Xiong H, Ji H, Yin H, Wei Q, Hu G (2017) The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis. Oncogene 36:989–998. https://doi.org/10.1038/onc.2016.265

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengsheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This study was approved by the ethics committee of the 900 Hospital of the Joint Logistics Team.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Yang, S. Long non-coding RNA LINC00243 promotes proliferation and glycolysis in non-small cell lung cancer cells by positively regulating PDK4 through sponging miR-507. Mol Cell Biochem 463, 127–136 (2020). https://doi.org/10.1007/s11010-019-03635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03635-3

Keywords

Navigation