Skip to main content

Advertisement

Log in

Alpha linolenic acid decreases apoptosis and oxidized phospholipids in cardiomyocytes during ischemia/reperfusion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The omega-3 fatty acid, alpha linolenic acid (ALA) found in plant-derived foods induces significant cardiovascular benefits when ingested. ALA may be cardioprotective during ischemia; however, the mechanism(s) responsible for this effect is unknown. Isolated adult rat cardiomyocytes were exposed to medium containing ALA for 24 h and then exposed to non-ischemic (control), simulated ischemia (ISCH), or simulated ischemia/reperfusion (IR) conditions. Cardiomyocyte phospholipids were extracted and analyzed by an HPLC/electrospray ionization tandem mass spectrometry system. Pre-treatment of cells with ALA resulted in a significant incorporation of ALA within cardiomyocyte phosphatidylcholine. Cell death, DNA fragmentation and caspase-3 activity increased during ischemia and ischemia/reperfusion. Two pro-apoptotic oxidized phosphatidylcholine (OxPC) species, 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) were significantly increased during both ischemia and ischemia/reperfusion. Pre-treatment of the cells with ALA resulted in a significant reduction in cell death during ischemia and ischemia/reperfusion challenge. Apoptosis was also inhibited during ischemia and ischemia/reperfusion as shown by reduced DNA fragmentation and decreased caspase activation. ALA pre-treatment significantly decreased the production of POVPC and PGPC during ischemia and ischemia/reperfusion. ALA pre-treatment also significantly increased in resting Ca2+ during ischemia or ischemia/reperfusion but did not improve Ca2+ transients. ALA protects the cardiomyocyte from apoptotic cell death during simulated ISCH and IR by inhibiting the production of specific pro-apoptotic OxPC species. OxPCs represent a viable interventional target to protect the heart during ischemic challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid

CL:

Cardiolipin

ESI:

Electrospray ionization

HPLC:

High performance liquid chromatography

ISCH:

Ischemia

IR:

Ischemia reperfusion

KDdiA- PPC:

1-palmitoyl-2-(4-keto-dodec-3-enadioyl)-sn-glycero-3-phosphocholine

KOdiA-PPC:

1-palmitoyl-2-(5-keto-6-octene-dioyl)-sn-glycero-3-phosphocholine

LDL:

Low-density lipoprotein

MRM:

Multiple reaction monitoring

nadph:

Nicotinamide adenine dinucleotide phosphate

OxLDL:

Oxidized low-density lipoprotein

OxPAPC:

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

OxPC:

Oxidized phosphatidylcholine

OxPL:

Oxidized phospholipids

PAzPC:

1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PEIPC:

1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine

PGPC:

1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine

PI:

Phosphatidylinositol

PL:

Phospholipid

PPARγ:

Peroxisome proliferator-activator receptor gamma

PONPC:

1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine

POVPC:

1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine

PS:

Phosphatidylserine

PSPC:

1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine

PUFA:

Poly-unsaturated fatty acid

ROS:

Reactive oxygen species

References

  1. Singh KK, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: a potential source of food, feed and fiber. Crit Rev Food Sci Nutr 51:210–222

    Article  CAS  PubMed  Google Scholar 

  2. Bassett CM, McCullough RS, Edel AL, Patenaude A, LaVallee RK, Pierce GN (2011) The alpha-linolenic acid content of flaxseed can prevent the atherogenic effects of dietary trans fat. Am J Physiol 301:H2220–H2226

    CAS  Google Scholar 

  3. Dupasquier CM, Weber AM, Ander BP, Rampersad PP, Steigerwald S, Wigle JT, Mitchell RW, Kroeger EA, Gilchrist JS, Moghadasian MM, Lukas A, Pierce GN (2006) Effects of dietary flaxseed on vascular contractile function and atherosclerosis during prolonged hypercholesterolemia in rabbits. Am J Physiol 291:H2987–H2996

    CAS  Google Scholar 

  4. Dupasquier CM, Dibrov E, Kneesh AL, Cheung PK, Lee KG, Alexander HK, Yeganeh BK, Moghadasian MH, Pierce GN (2007) Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions. Am J Physiol 293:H2394–H2402

    CAS  Google Scholar 

  5. Francis AA, Deniset JF, Austria JA, LaVallee RK, Maddaford GG, Hedley TE, Dibrov E, Pierce GN (2013) Effects of dietary flaxseed on atherosclerotic plaque regression. Am J Physiol 304:H1743–H1751

    CAS  Google Scholar 

  6. Rodriguez-Leyva D, Weighell W, Edel AL, LaVallee R, Dibrov E, Pinneker R, Maddaford TG, Ramjiawan B, Aliani M, Guzman R, Pierce GN (2013) Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension 62:1081–1089

    Article  CAS  PubMed  Google Scholar 

  7. Ander BP, Weber AR, Rampersad PP, Gilchrist JS, Pierce GN, Lukas A (2004) Dietary flaxseed protects against ventricular fibrillation induced by ischemia-reperfusion in normal and hypercholesterolemic Rabbits. J Nutr 134:3250–3256

    CAS  PubMed  Google Scholar 

  8. Ander BP, Hurtado C, Raposo CS, Maddaford TG, Deniset JF, Hryshko LV, Pierce GN, Lukas A (2007) Differential sensitivities of the NCX1.1 and NCX1.3 isoforms of the Na+–Ca2+ exchanger to alpha-linolenic acid. Cardiovasc Res 73:395–403

    Article  CAS  PubMed  Google Scholar 

  9. Milberg P, Frommeyer G, Kleideiter A, Fischer A, Osada N, Breithardt G, Fehr M, Eckardt L (2011) Antiarrhythmic effects of free polyunsaturated fatty acids in an experimental model of LQT2 and LQT3 due to suppression of early afterdepolarizations and reduction of spatial and temporal dispersion of repolarization. Heart Rhythm 8:1492–1500

    Article  PubMed  Google Scholar 

  10. Bassett CM, McCullough RS, Edel AL, Maddaford TG, Dibrov E, Blackwood DP, Austria JA, Pierce GN (2009) Trans-fatty acids in the diet stimulate atherosclerosis. Metab Clin Exp 58:1802–1808

    Article  CAS  PubMed  Google Scholar 

  11. Fiaccavento R, Carotenuto F, Minieri M, Masuelli L, Vecchini A, Bei R, Modesti A, Binaglia L, Fusco A, Bertoli A, Forte G, Carosella L, Di Nardo P (2006) Alpha-linolenic acid-enriched diet prevents myocardial damage and expands longevity in cardiomyopathic hamsters. Am J Pathol 169:1913–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carotenuto F, Minieri M, Monego G, Fiaccavento R, Bertoni A, Sinigaglia F, Vecchini A, Carosella L, Di Nardo P (2013) A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. Cardiovasc Res 100:422–431

    Article  CAS  PubMed  Google Scholar 

  13. Stemmer U, Dunai ZA, Koller D, Purstinger G, Zenzmaier E, Deigner HP, Aflaki E, Kratky D, Hermetter A (2012) Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis 11:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin J, Testai FD, Dawson S, Kilkus J, Dawson G (2009) Oxidized phosphatidylcholine formation and action in oligodendrocytes. J Neurochem 110:1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loidl A, Sevcsik E, Riesenhuber G, Deigner HP, Hermetter A (2003) Oxidized phospholipids in minimally modified low density lipoprotein induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth muscle cells. J Biol Chem 278:32921–32928

    Article  CAS  PubMed  Google Scholar 

  16. Bochkov V, Oskolkova O, Birukov K, Levonen A-L, Binder C, Stöckl J (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:77–81

    Article  CAS  PubMed  Google Scholar 

  18. Marathe G, Zimmerman G, Prescott S, McIntyre T (2002) Activation of vascular cells by PAF-like lipids in oxidized LDL. Vascul Pharmacol 38:193–200

    Article  CAS  PubMed  Google Scholar 

  19. Ravandi A, Babaei S, Leung R, Monge JC, Hoppe G, Hoff H, Kamido H, Kuksis A (2004) Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 39:97–109

    CAS  PubMed  Google Scholar 

  20. Maddaford TG, Hurtado C, Sobrattee S, Czubryt MP, Pierce GN (1999) A model of low-flow ischemia and reperfusion in single, beating adult cardiomyocytes. Am J Physiol 277:H788–H798

    CAS  PubMed  Google Scholar 

  21. van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, Nieuwdorp M, Joosten LA, Netea MG, Koschinsky ML, Witztum JL, Tsimikas S, Riksen NP, Stroes ES (2016) Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation 134(8):611–624

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bordun KA, Premecz S, daSilva M, Mandal S, Goyal V, Glavinovic T, Cheung M, Cheung D, White CW, Chaudhary R, Freed DH, Villarraga HR, Herrmann J, Kohli M, Ravandi A, Thliveris J, Pitz M, Singal PK, Mulvagh S, Jassal DS (2015) The utility of cardiac biomarkers and echocardiography for the early detection of bevacizumab- and sunitinib-mediated cardiotoxicity. Am J Physiol 309:H692–H701

    CAS  Google Scholar 

  23. van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, Nieuwdorp M, Joosten LA, Netea MG, Koschinsky ML, Witztum JL, Tsimikas S, Riksen NP, Stroes ES (2016) Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation 134:611–624

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao S, Zhang R, Greenberg ME, Sun M, Chen X, Levison BS, Salomon RG, Hazen SL (2006) Phospholipid hydroxyalkenals, a subset of recently discovered endogenous CD36 ligands, spontaneously generate novel furan-containing phospholipids lacking CD36 binding activity in vivo. J Biol Chem 281(42):31298–31308

  25. Bassett CM, Rodriguez-Leyva D, Pierce GN (2009) Experimental and clinical research findings on the cardiovascular benefits of consuming flaxseed. Appl Physiol Nutr Metab 34:965–974

    Article  CAS  PubMed  Google Scholar 

  26. Fleming JA, Kris-Etherton PM (2014) The evidence for alpha-linolenic acid and cardiovascular disease benefits: comparisons with eicosapentaenoic acid and docosahexaenoic acid. Adv Nutr 5:863S–876S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nounou HA, Deif MM, Shalaby MA (2012) Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia. Lipids Health Dis 11:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu X, Cui L, Zhang Z, Zhao Q, Li S (2013) alpha-Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis. Acta Biochim Biophys Sin 45:817–826

    Article  CAS  PubMed  Google Scholar 

  29. Vecchini A, Ceccarelli V, Susta F, Caligiana P, Orvietani P, Binaglia L, Nocentini G, Riccardi C, Calviello G, Palozza P, Maggiano N, Di Nardo P (2004) Dietary alpha-linolenic acid reduces COX-2 expression and induces apoptosis of hepatoma cells. J Lipid Res 45:308–316

    Article  CAS  PubMed  Google Scholar 

  30. Ceccarelli V, Racanicchi S, Martelli MP, Nocentini G, Fettucciari K, Riccardi C, Marconi P, Di Nardo P, Grignani F, Binaglia L, Vecchini A (2011) Eicosapentaenoic acid demethylates a single CpG that mediates expression of tumor suppressor CCAAT/enhancer-binding protein delta in U937 leukemia cells. J Biol Chem 286:27092–27102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun SN, Jia WD, Chen H, Ma JL, Ge YS, Yu JH, Li JS (2013) Docosahexaenoic acid (DHA) induces apoptosis in human hepatocellular carcinoma cells. Int J Clin Exp Pathol 6:281–289

    PubMed  PubMed Central  Google Scholar 

  32. Cetrullo S, Tantini B, Flamigni F, Pazzini C, Facchini A, Stefanelli C, Caldarera CM, Pignatti C (2012) Antiapoptotic and antiautophagic effects of eicosapentaenoic acid in cardiac myoblasts exposed to palmitic acid. Nutrients 4:78–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsu HC, Chen CY, Chiang CH, Chen MF (2014) Eicosapentaenoic acid attenuated oxidative stress-induced cardiomyoblast apoptosis by activating adaptive autophagy. Eur J Nutr 53:541–547

    Article  CAS  PubMed  Google Scholar 

  34. Beales IL, Garcia-Morales C, Ogunwobi OO, Mutungi G (2014) Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B. Mol Cell Endocrinol 382:150–158

    Article  CAS  PubMed  Google Scholar 

  35. Wu X, Yan Q, Zhang Z, Du G, Wan X (2012) Acrp30 inhibits leptin-induced metastasis by downregulating the JAK/STAT3 pathway via AMPK activation in aggressive SPEC-2 endometrial cancer cells. Oncol Rep 27:1488–1496

    Article  CAS  PubMed  Google Scholar 

  36. Wei CD, Li Y, Zheng HY, Sun KS, Tong YQ, Dai W, Wu W, Bao AY (2012) Globular adiponectin protects H9c2 cells from palmitate-induced apoptosis via Akt and ERK1/2 signaling pathways. Lipids Health Dis 11:135

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner JA, Kirchgessner TG, Lusis AJ (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA 103:12741–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fruhwirth GO, Moumtzi A, Loidl A, Ingolic E, Hermetter A (2006) The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta 1761:1060–1069

    Article  CAS  PubMed  Google Scholar 

  39. Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S (2013) Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 33:1162–1170

    Article  CAS  PubMed  Google Scholar 

  40. Chang YC, Huang KX, Huang AC, Ho YC, Wang CJ (2006) Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis. Food Chemical Toxicol 44:1015–1023

    Article  CAS  Google Scholar 

  41. Chen JH, Tsai CW, Wang CP, Lin HH (2013) Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation. Toxicol Appl Pharmacol 272:313–324

    Article  CAS  PubMed  Google Scholar 

  42. Dahech I, Harrabi B, Hamden K, Feki A, Mejdoub H, Belghith H, Belghith KS (2013) Antioxidant effect of nondigestible levan and its impact on cardiovascular disease and atherosclerosis. Int J Biol Macromol 58:281–286

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Dong L, Yang X, Shi H, Zhang L (2011) alpha-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes. Lipids Health Dis 10:81

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kuksis A, Breckenridge WC, Marai L, Stachnyk O (1969) Molecular species of lecithins of rat heart, kidney, and plasma. J Lipid Res 10:25–32

    CAS  PubMed  Google Scholar 

  45. van Dijk RA, Kolodgie F, Ravandi A, Leibundgut G, Hu PP, Prasad A, Mahmud E, Dennis E, Curtiss LK, Witztum JL, Wasserman BA, Otsuka F, Virmani R, Tsimikas S (2012) Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res 53:2773–2790

    Article  PubMed  PubMed Central  Google Scholar 

  46. Francis AA, Pierce GN (2011) An integrated approach for the mechanisms responsible for atherosclerotic plaque regression. Exp Clin Cardiol 16:77–86

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bassett CM, Edel AL, Patenaude AF, McCullough RS, Blackwood DP, Chouinard PY, Paquin P, Lamarche B, Pierce GN (2010) Dietary vaccenic acid has antiatherogenic effects in LDLr-/- mice. J Nutr 140:18–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by operating grants obtained from the Canadian Institutes for Health Research (to GNP) and from Manitoba Medical Services Foundation (to AR) and the Heart and Stroke Foundation of Canada (to AR). Indirect support for this research was obtained from St Boniface Hospital Research Foundation. RG was supported by a Studentship from the Manitoba Health Research Council. DH was supported by a joint-funded Studentship from the Manitoba Health Research Council and the University of Manitoba.

Author information

Authors and Affiliations

Authors

Contributions

Riya Ganguly: Collection and analysis of data, writing of manuscript; Devin Hasanally: Collection and analysis of data, writing of paper; Aleksandra Stamenkovic: Collection and analysis of data. Thane G Maddaford: Collection and analysis of data, writing of paper; Rakesh Chaudhary: Collection and analysis of data; Grant N Pierce: Coordination of experiments, writing of paper; Amir Ravandi: Coordination of experiments, writing of paper.

Corresponding authors

Correspondence to Grant N. Pierce or Amir Ravandi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Co-first authorship: Riya Ganguly and Devin Hasanally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, R., Hasanally, D., Stamenkovic, A. et al. Alpha linolenic acid decreases apoptosis and oxidized phospholipids in cardiomyocytes during ischemia/reperfusion. Mol Cell Biochem 437, 163–175 (2018). https://doi.org/10.1007/s11010-017-3104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3104-z

Keywords

Navigation