Skip to main content

Advertisement

Log in

Eicosapentaenoic acid attenuated oxidative stress-induced cardiomyoblast apoptosis by activating adaptive autophagy

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Recently, several large, randomized clinical trials have proven the benefits of eicosapentaenoic acid (EPA) in cardiovascular prevention. However, the precise protective mechanisms of EPA for heart disease are still controversial. In this study, we evaluate the possible protective effects of EPA, especially the role of autophagy, against cardiomyocyte apoptosis induced by oxidative stress.

Methods

H9C2 myocardioblasts were incubated with 80 μM EPA for 24 h and then exposed to 400 μM of hydrogen peroxide for 3 h. Autophagic response, lysosome function, and apoptosis were analyzed at the end of the experiment.

Results

Preincubation of EPA significantly inhibited apoptosis and increased cell viability for H9C2 cells under oxidative stress. The effects of EPA on apoptosis and cell viability were suppressed by 3-MA treatment (autophagic inhibitor). Oxidative stress decreased Beclin 1 protein expression, increased the ratio of LC3II/LC3I, and reduced the formation of acid organelles, whereas the preincubation of EPA abrogated the negative effect of oxidative stress on H9C2 by mediating the autophagic response. Inhibiting autophagy by 3-methyladenine reversed the EPA effect significantly by increasing the ratio of LC3II–LC3I. Treatment with 3-MA did not alter the increment of acid organelles by EPA preincubation. In addition, EPA restored the phosphorylation of Akt activated by H2O2 treatment and induced the phosphorylation of AMPK in H9C2 cells under oxidative stress.

Conclusion

EPA attenuated oxidative stress-induced cardiomyocyte apoptosis by activating an adaptive autophagic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takemura G, Maruyama R, Goto K, Kanamori H, Tsujimoto A, Minatoguchi S, Fujiwara H (2009) Fate of isolated adult cardiomyocytes undergoing starvation-induced autophagic degeneration. Autophagy 5(1):90–92

    Article  CAS  Google Scholar 

  2. Givvimani S, Munjal C, Tyagi N, Sen U, Metreveli N, Tyagi SC (2012) Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS One 7(3):e32388. doi:10.1371/journal.pone.0032388

    Article  CAS  Google Scholar 

  3. Takagi H, Matsui Y, Sadoshima J (2007) The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal 9(9):1373–1381

    Article  CAS  Google Scholar 

  4. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3(4):405–407

    CAS  Google Scholar 

  5. Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 108(10):4123–4128. doi:10.1073/pnas.1015081108

    Article  CAS  Google Scholar 

  6. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624. doi:10.1038/nm1574

    Article  CAS  Google Scholar 

  7. Cetrullo S, Tantini B, Flamigni F, Pazzini C, Facchini A, Stefanelli C, Caldarera CM, Pignatti C (2012) Antiapoptotic and antiautophagic effects of eicosapentaenoic acid in cardiac myoblasts exposed to palmitic acid. Nutrients 4(2):78–90. doi:10.3390/nu4020078

    Article  CAS  Google Scholar 

  8. Duda MK, O’Shea KM, Tintinu A, Xu W, Khairallah RJ, Barrows BR, Chess DJ, Azimzadeh AM, Harris WS, Sharov VG, Sabbah HN, Stanley WC (2009) Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction. Cardiovasc Res 81(2):319–327

    CAS  Google Scholar 

  9. Jung UJ, Torrejon C, Tighe AP, Deckelbaum RJ (2008) n-3 Fatty acids and cardiovascular disease: mechanisms underlying beneficial effects. Am J Clin Nutr 87(6):2003S–2009S

    CAS  Google Scholar 

  10. Ogita H, Node K, Asanuma H, Sanada S, Takashima S, Minamino T, Soma M, Kim J, Hori M, Kitakaze M (2003) Eicosapentaenoic acid reduces myocardial injury induced by ischemia and reperfusion in rabbit hearts. J Cardiovasc Pharmacol 41(6):964–969

    Article  CAS  Google Scholar 

  11. Engelbrecht AM, Engelbrecht P, Genade S, Niesler C, Page C, Smuts M, Lochner A (2005) Long-chain polyunsaturated fatty acids protect the heart against ischemia/reperfusion-induced injury via a MAPK dependent pathway. J Mol Cell Cardiol 39(6):940–954. doi:10.1016/j.yjmcc.2005.08.004

    Article  CAS  Google Scholar 

  12. Pignier C, Revenaz C, Rauly-Lestienne I, Cussac D, Delhon A, Gardette J, Le Grand B (2007) Direct protective effects of poly-unsaturated fatty acids, DHA and EPA, against activation of cardiac late sodium current: a mechanism for ischemia selectivity. Basic Res Cardiol 102(6):553–564. doi:10.1007/s00395-007-0676-x

    Article  CAS  Google Scholar 

  13. Raimondi L, Lodovici M, Visioli F, Sartiani L, Cioni L, Alfarano C, Banchelli G, Pirisino R, Cecchi E, Cerbai E, Mugelli A (2005) n-3 polyunsaturated fatty acids supplementation decreases asymmetric dimethyl arginine and arachidonate accumulation in aging spontaneously hypertensive rats. Eur J Nutr 44(6):327–333. doi:10.1007/s00394-004-0528-5

    Article  CAS  Google Scholar 

  14. Leroy C, Tricot S, Lacour B, Grynberg A (2008) Protective effect of eicosapentaenoic acid on palmitate-induced apoptosis in neonatal cardiomyocytes. Biochim Biophys Acta 1781(11–12):685–693. doi:10.1016/j.bbalip.2008.07.009

    Article  CAS  Google Scholar 

  15. Chen CY, Hsu HC, Lee AS, Tang D, Chow LP, Yang CY, Chen H, Lee YT, Chen CH (2012) The most negatively charged low-density lipoprotein L5 induces stress pathways in vascular endothelial cells. J Vasc Res 49(4):329–341. doi:10.1159/000337463

    Article  CAS  Google Scholar 

  16. Zhang XQ, Dunner K Jr, Benedict WF (2010) Autophagy is induced by adenoviral-mediated interferon alpha treatment in interferon resistant bladder cancer and normal urothelial cells as a cell death protective mechanism but not by the bystander factors produced. Cancer Gene Ther 17(8):579–584. doi:10.1038/cgt.2010.14

    Article  CAS  Google Scholar 

  17. Nemchenko A, Chiong M, Turer A, Lavandero S, Hill JA (2011) Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 51(4):584–593. doi:10.1016/j.yjmcc.2011.06.010

    Article  CAS  Google Scholar 

  18. Xie M, Morales CR, Lavandero S, Hill JA (2011) Tuning flux: autophagy as a target of heart disease therapy. Curr Opin Cardiol 26(3):216–222. doi:10.1097/HCO.0b013e328345980a

    Article  CAS  Google Scholar 

  19. Ma X, Godar RJ, Liu H, Diwan A (2012) Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death. Autophagy 8(3):297–309

    Article  CAS  Google Scholar 

  20. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia–reperfusion injury. Circulation 125(25):3170–3181. doi:10.1161/CIRCULATIONAHA.111.041814

    Article  CAS  Google Scholar 

  21. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861. doi:10.1074/jbc.M109.080796

    Article  CAS  Google Scholar 

  22. Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11. doi:10.1128/MCB.06159-11

    CAS  Google Scholar 

  23. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023. doi:10.1038/ncb2329

    Article  CAS  Google Scholar 

  24. Miyamoto S, Murphy AN, Brown JH (2009) Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 41(2):169–180. doi:10.1007/s10863-009-9205-y

    Article  CAS  Google Scholar 

  25. Chaanine AH, Hajjar RJ (2011) AKT signalling in the failing heart. Eur J Heart Fail 13(8):825–829. doi:10.1093/eurjhf/hfr080

    Article  CAS  Google Scholar 

  26. Horie T, Ono K, Nagao K, Nishi H, Kinoshita M, Kawamura T, Wada H, Shimatsu A, Kita T, Hasegawa K (2008) Oxidative stress induces GLUT4 translocation by activation of PI3-K/Akt and dual AMPK kinase in cardiac myocytes. J Cell Physiol 215(3):733–742. doi:10.1002/jcp.21353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Grant NSC 98-2314-B-002-121-MY3, NSC 100-2313-B-002-053, NSC 101-2313-B-002-030-MY3 and 10R70615-3. The study was sponsored, conducted, and analyzed by the National Science Council and National Taiwan University. The authors are grateful to Miss Chein Jun Kao for technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, HC., Chen, CY., Chiang, CH. et al. Eicosapentaenoic acid attenuated oxidative stress-induced cardiomyoblast apoptosis by activating adaptive autophagy. Eur J Nutr 53, 541–547 (2014). https://doi.org/10.1007/s00394-013-0562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0562-2

Keywords

Navigation