Skip to main content
Log in

Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

For decades, there has been an increasing concern about the potential hazards of non-ionizing electromagnetic fields that are present in the environment and alarming as a major pollutant or electro-pollutant for health risk and neuronal diseases. Therefore, the objective of the present study was to explore the effects of 10 GHz microwave radiation on developing mice brain. Two weeks old mice were selected and divided into two groups (i) sham-exposed and (ii) microwave-exposed groups. Animals were exposed for 2 h/day for 15 consecutive days. After the completion of exposure, within an hour, half of the animals were autopsied immediately and others were allowed to attain 6 weeks of age for the follow-up study. Thereafter results were recorded in terms of various biochemical, behavioral, and histopathological parameters. Body weight result showed significant changes immediately after treatment, whereas non-significant changes were observed in mice attaining 6 weeks of age. Several other endpoints like brain weight, lipid peroxidation, glutathione, protein, catalase, and superoxide dismutase were also found significantly (p < 0.05) altered in mice whole brain. These significant differences were found immediately after exposure and also in follow-up on attaining 6 weeks of age in microwave exposure group. Moreover, statistically significant (p < 0.001) effect was investigated in spatial memory of the animals, in learning to locate the position of platform in Morris water maze test. Although in probe trial test, sham-exposed animals spent more time in searching for platform into the target quadrant than in opposite or other quadrants. Significant alteration in histopathological parameters (qualitative and quantitative) was also observed in CA1 region of the hippocampus, cerebral cortex, and ansiform lobule of cerebellum. Results from the present study concludes that the brain of 2 weeks aged mice was very sensitive to microwave exposure as observed immediately after exposure and during follow-up study at 6 weeks of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Çeliker M, Özgür A, Tümkaya L, Terzi S, Yılmaz M, Kalkan Y, Erdoğan E (2016) Effects of exposure to 2100 MHz GSM-like radiofrequency electromagnetic field on auditory system of rats. Braz J Otorhinolaryngol S1808–S8694:30222-1. doi:10.1016/j.bjorl.2016.10.004

  2. Mugunthan N, Shanmugasamy K, Anbalagan J, Rajanarayanan S, Meenachi S (2016) Effects of long term exposure of 900-1800 MHz radiation emitted from 2G mobile phone on mice hippocampus—a histomorphometric study. J Clin Diagn Res 10:AF01–AF06. doi:10.7860/JCDR/2016/21630.8368

  3. Kerimoğlu G, Hancı H, Baş O, Aslan A, Erol HS, Turgut A, Kaya H, Çankaya S, Sönmez OF, Odacı E (2016) Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats. J Chem Neuroanat S0891–0618:30075–30078. doi:10.1016/j.jchemneu.2016.07.004

    Google Scholar 

  4. Kim JY, Kim HJ, Kim N, Kwon JH, Park MJ (2016) Effects of radiofrequency field exposure on glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Int J Radiat Biol 20:1–22

    CAS  Google Scholar 

  5. Chauhan P, Verma HN, Sisodia R, Kesari KK (2016) Microwave radiation (2.45 GHz) induced oxidative stress: whole body exposure effect on histopathology of Wistar rats. Electromagn Biol Med (in press). doi:10.3109/15368378.2016.1144063

  6. Sharma A, Kesari KK, Saxena VK, Sisodia R (2016) The influence of prenatal 10 GHz microwave radiation exposure on a developing mice brain. Gen Physiol Biophys (in press)

  7. Kesari KK, Behari J, Kumar S (2010) Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int J Rad Biol 86:334–343

    Article  CAS  PubMed  Google Scholar 

  8. Kesari KK, Meena R, Nirala J, Kumar J, Verma HN (2014) Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain. Cell Biochem Biophys 68:347–358

    Article  CAS  PubMed  Google Scholar 

  9. Kesari KK, Behari J (2009) Fifty GHz microwave exposure effect of radiations on rat brain. Appl Biochem Biotechnol 158:126–139

    Article  CAS  PubMed  Google Scholar 

  10. Lai H, Singh NP (1996) Single and double strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 69:513

    Article  CAS  PubMed  Google Scholar 

  11. Sharma A, Sisodia R, Bhatnagar D, Saxena VK (2014) Spatial memory and learning performance and its relationship to protein synthesis of Swiss albino mice exposed to 10 GHz microwaves. Int J Radiat Biol 90:29–35

    Article  CAS  PubMed  Google Scholar 

  12. Deshmukh PS, Megha K, Nasare N, Banerjee BD, Ahmed RS, Abegaonkar MP, Tripathi AK, Mediratta PK (2016) Effect of low level subchronic microwave radiation on rat brain. Biomed Environ Sci 29:858–867

    PubMed  Google Scholar 

  13. Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, Harris AW (1997) Lymphomas in Eμ-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Radiat Res 147:631

    Article  CAS  PubMed  Google Scholar 

  14. Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V et al (2011) Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 12:624–626

    Article  PubMed  Google Scholar 

  15. Coureau G, Bouvier G, Lebailly P, Fabbro-Peray P, Gruber A et al (2014) Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med 71:514–522

    Article  PubMed  Google Scholar 

  16. Hardell L, Carlberg M (2013) Use of mobile and cordless phones and survival of patients with glioma. Neuroepidemiology 40:101–108

    Article  PubMed  Google Scholar 

  17. Hardell L, Carlberg M, Hansson Mild K (2013) Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology 20:85–110

    Article  PubMed  Google Scholar 

  18. Hardell L, Carlberg M, Soderqvist F, Mild KH (2013) Pooled analysis of case-control studies on acoustic neuroma diagnosed 1997–2003 and 2007–2009 and use of mobile and cordless phones. Int J Oncol 43:1036–1044

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hardell L, Carlberg M, Soderqvist F, Mild KH (2013) Case-control study of the association between malignant brain tumours diagnosed between 2007 and 2009 and mobile and cordless phone use. Int J Oncol 43:1833–1845

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mead N (2008) Strong signal for cell phone effects. Environ Health Perspect 116:422

    Article  Google Scholar 

  21. Hao Y, Zhao L, Peng R (2015) Effects of microwave radiation on brain energy metabolism and related mechanisms. Mil Med Res 2:4. doi:10.1186/s40779-015-0033-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Habash RW, Elwood JM, Krewski D, Lotz WG, McNamee JP, Prato FS (2009) Recent advances in research on radiofrequency fields and health: 2004-2007. Toxicol Environ Health B 12:250–288

    Article  CAS  Google Scholar 

  23. Kaplan S, Erdem G, Altunkaynak BZ, Deniz OG, Kayhan E, Altunkaynak ME (2013) Histopathological examination of the Purkinje cells in the cerebellum of newborn rats following prenatal exposure to 900 MHz electromagnetic field. J Exp Clin Med 30:280

    Article  Google Scholar 

  24. Walani S, Bhatnagar D, Sisodia R (2014) Biochemical alterations in cerebellum of Swiss albino mice after 10 GHz microwave exposure. Int J Adv Res 2:708–716

    Google Scholar 

  25. Kumar S, Kesari KK, Behari J (2011) Influence of microwave exposure on fertility of male rats. Fertil Steril 95:1500–1502

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Behari J, Sisodia R (2012) Impact of microwave at X-band in the aetiology of male infertility. Electromagn Biol Med 31:223–232

    Article  CAS  PubMed  Google Scholar 

  27. Kumar S, Behari J, Sisodia R (2013) Influence of electromagnetic fields on reproductive system of male rats. Int J Radiat Biol 89:147–154

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Li Z, Gao Y, Zhang C (2015) Effects of fetal microwave radiation exposure on offspring behavior in mice. J Radiat Res 56:261–268

    Article  CAS  PubMed  Google Scholar 

  29. Rifat F, Sisodia R (2017) Modulation of 10 GHz microwaves induced biochemical changes in different organs of swiss albino mice by Prunus domestica fruit extract. Int J Pharm Sci Res 8:136–144

    Google Scholar 

  30. Paulraj R, Behari J (2012) Enzymatic alterations in developing rat brain cells exposed to a low-intensity 16.5 GHz microwave radiation. Electromagn Biol Med 31:233–242

    Article  CAS  PubMed  Google Scholar 

  31. Paulraj R, Behari J (2012) Biochemical changes in rat brain exposed to low intensity 9.9 GHz microwave radiation. Cell Biochem Biophys 63:97–102

    Article  CAS  PubMed  Google Scholar 

  32. Hamblin DL, Wood AW, Croft RJ, Stough C (2004) Examining the effects of electromagnetic fields emitted by GSM mobile phones on human event-related potentials and performance during an auditory task. Clin Neurophysiol 115:171–178

    Article  PubMed  Google Scholar 

  33. Sievert U, Eggert S, Pau HW (2005) Can mobile phone emissions affect auditory functions of cochlea or brain stem? Otolaryngol Head Neck Surg 132:451–455

    Article  PubMed  Google Scholar 

  34. Ferreri F, Curcio G, Pasqualetti P, De Gennaro L, Fini R, Rossini PM (2006) Mobile phone emissions and human brain excit- ability. Ann Neurol 60:188–196

    Article  PubMed  Google Scholar 

  35. Krause CM, Pesonen M, Haarala Björnberg C, Hämäläinen H (2007) Effects of pulsed and continuous wave 902 MHz mobile phone exposure on brain oscillatory activity during cognitive processing. Bioelectromagnetics 28:296–308

    Article  PubMed  Google Scholar 

  36. Kumlin T, Iivonen H, Miettinen P, Juvonen A, van Groen T, Puranen L, Pitkäaho R, Juutilainen J, Tanila H (2007) Mobile phone radiation and the developing brain: behavioral and morphological effects in juvenile rats. Radiat Res 168:471–479

    Article  CAS  PubMed  Google Scholar 

  37. Kang XK, LiLW Leong MS, Kooi PS (2001) A method of moments study of SAR inside spheroidal human head and current distribution among handset wireless antennas. J Electromag Waves Appl 15(1):61

    Article  Google Scholar 

  38. Barnett J, Timotijevic L, Shepherd R, Senior V (2007) Public responses to precautionary information from the Department of Health (UK) about possible health risks from mobile phones. Health Policy 82:240–250

    Article  PubMed  Google Scholar 

  39. Rothman KJ, Chou CK, Morgan R, Balzano Q, Guy AW, Funch DP (1996) Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology 7:291–298

    Article  CAS  PubMed  Google Scholar 

  40. Dimbylow PJ, Mann SM (1994) SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Phys Med Biol 39:1537–1544

    Article  CAS  PubMed  Google Scholar 

  41. Kheifets L, Repacholi M, Saunders R, van Deventer E (2005) The sensitivity of children to electromagnetic fields. Pediatrics 116:e303–e313

    Article  PubMed  Google Scholar 

  42. Dong J, Peng RY, Wang SM, Gao YB, Wang LF, Zhao L et al (2011) Effects on abilities of learning and memory and structural changes of brain in rats induced by microwave radiation under different conditions. Mil Med Sci 35:347–350

    Google Scholar 

  43. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188:316–330

    Article  CAS  PubMed  Google Scholar 

  44. Koivisto M, Krause CM, Revonsuo A, Laine M, Hämäläinen H (2000) The effects of electromagnetic field emitted by GSM phones on working memory. NeuroReport 11:1641–1643

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Peng R, Zhou H, Wang S, Gao Y, Wang L et al (2013) Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol 89:1100–1107

    Article  CAS  PubMed  Google Scholar 

  46. Xu S, Ning W, Xu Z, Zhou S, Chiang H, Luo J (2006) Chronic exposure to GSM 1800 MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett 398:253–257

    Article  CAS  PubMed  Google Scholar 

  47. Zhao L, Peng RY, Wang SM, Wang LF, Gao YB, Dong J et al (2012) Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci 25:182–188

    PubMed  Google Scholar 

  48. Dasdag S, Bilgin HM, Akdag MZ, Celik H, Aksen F (2008) Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats. Biotech Biotechnolog Equip 22:992–997

    Article  Google Scholar 

  49. Kesari KK, Kumar S, Behari J (2012) Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagn Biol Med 31:213–222

    Article  CAS  PubMed  Google Scholar 

  50. Kesari KK, Kumar S, Nirala J, Siddiqui MH, Behari J (2013) Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochem Biophys 65:85–96

    Article  CAS  PubMed  Google Scholar 

  51. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S (2015) Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 19:1–16

    Google Scholar 

  52. Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cellul Cardiol 73:2–9

    Article  CAS  Google Scholar 

  53. Jajte J, Grzegorczyk J, Zmyslony M, Rajkowska E (2002) Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes. Bioelectrochem 57:107–111

    Article  CAS  Google Scholar 

  54. Narayanan SN, Kumar RS, Karun KM, Nayak SB, Bhat PG (2015) Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metabol Brain Dis 30:1193–1206

    Article  CAS  Google Scholar 

  55. Shehu A, Mohammed A, Magaji RA, Muhammad MS (2015) Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affect anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats. Metabol Brain Dis 31(2):355–362

    Article  Google Scholar 

  56. Durney CH, Iskander MF, Massoudi H, Johnson CC (1984) An empirical formula for broad band SAR calculations of prolate spheroidal models of humans and animal. In: Osepchuk JM (ed) Biological effects of electromagnetic radiation. IEEE Press, New York, pp 85–90

    Google Scholar 

  57. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzym 52:302–310

    Article  CAS  Google Scholar 

  58. Moron MS, Depierre JW, Mannervik B (1979) Levels of GSH, GR and GST activities in rat lung and liver. BBA 582:67–78

    CAS  PubMed  Google Scholar 

  59. Marklund S, Marklund G (1974) Involvement of the superoxyde anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxyde dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  60. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  61. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein by binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  62. Fragopoulou AF, Miltiadous P, Stamatakis A, Stylianopoulou F, Koussoulakos SL, Margaritis LH (2010) Whole body exposure with GSM 900 MHz affects spatial memory in mice. Pathophysiology 17:179–187

    Article  CAS  PubMed  Google Scholar 

  63. Mallory FB (1994) In: Animal Tissue Techniques. 4th Eds. (Humason GL, Freeman WH) San Francisco p 150

  64. Stead JDH, Chrales N, Fan M, Yongjia W, Simon E, Vazquez DM, Stanley JW, Huda A (2006) Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J Neurosci 26:345–353

    Article  CAS  PubMed  Google Scholar 

  65. Stringari J, Flavia C, Meotti DO, Souza ARS, Farina SM (2006) Postnatal methylmercury exposure induces hyperlocomotor activity and cerebellar oxidative stress in mice: dependence on the neurodevelopmental period. Neurochem Res 31:563–569

    Article  CAS  PubMed  Google Scholar 

  66. Subbarao KV, Richardson JS (1990) Iron dependent peroxidation of rat brain: a regional study. J Neurosci Res 26:224–232

    Article  CAS  PubMed  Google Scholar 

  67. Ogawa N (1994) Free radicals and neural cell damage. Rinsho Shinkeigake 34:1266–1268

    CAS  Google Scholar 

  68. Kesari KK, Kumar S, Behari J (2011) Effects of radiofrequency electromagnetic waves exposure from cellular phone on reproductive pattern in male Wistar rats. Appl Biochem Biotechnol 164:546–559

    Article  CAS  PubMed  Google Scholar 

  69. Kesari KK, Kumar S, Behari J (2011) 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med 30:219–234

    Article  CAS  PubMed  Google Scholar 

  70. Cakatay U, Telci A, Kayali R, Tekeli F, Akcay T, Sivas A (2001) Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol 36:221–229

    Article  CAS  PubMed  Google Scholar 

  71. Khan JY, Black SM (2003) Developmental changes in murine brain antioxidant enzymes. Pediatr Res 54:77–82

    Article  CAS  PubMed  Google Scholar 

  72. Kamal A, Biessels GJ, Duis SEJ, Gispen WH (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43:500–506

    Article  CAS  PubMed  Google Scholar 

  73. Jerusalinky D, Kornisiuk E, Izquierdo I (1997) Cholinergic neurotransmission and synaptic plasticity concerning memory processing. Neurochem Res 22:507–515

    Article  Google Scholar 

  74. Liu R, Liu W, Doctrow SR, Baudry M (2003) Iron toxicity in organotypic cultures of hippocampal slices: role of reactive oxygen species. J Neurochem 85:492–502

    Article  CAS  PubMed  Google Scholar 

  75. Sakhnini L, Al-Ghareebb S, Khalilb S, Ahmedb R, Ameerb AA, Kamal A (2013) Effects of exposure to 50 Hz electromagnetic fields on Morris water-maze performance of prenatal and neonatal mice. J Assoc Arab Uni Basic Appl Sci 15:1–6

    Google Scholar 

  76. Sakhnini L, Ali HA, Qassab NA, Arab EA, Kamal A (2012) Subacute exposure to 50-Hz electromagnetic fields affect prenatal and neonatal mice’s motor coordination. J Appl Phys 111:307–314

    Article  Google Scholar 

  77. Miranda RN, Blanco E, Begega A, SantiNLJ Arias JL (2006) Reversible changes in hippocampal CA1 synapses associated with water maze training in rats. Synapse 59:177–181

    Article  CAS  PubMed  Google Scholar 

  78. Nader K (2003) Memory traces unbound. Trends Neurosci 26:65–72

    Article  CAS  PubMed  Google Scholar 

  79. Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram. Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  80. Vago DR, Kesner RP (2005) Abstract Viewer/Itinerary Planner, Program No. 647.5. An electrophysiological and behavioral characterization of the temporoammonic pathway: Disruption produces deficits in retrieval and spatial mismatch. Society for Neuroscience, Washington, D.C

  81. Jerman T, Kesner RP, Hunsaker MR (2006) Disconnection analysis of CA3 and DG in mediating encoding but not retrieval in a spatial maze learning task. Learn Mem 13:458–464

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79:1–48

    Article  CAS  PubMed  Google Scholar 

  83. Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246

    Article  CAS  PubMed  Google Scholar 

  84. Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001) Accumulation of hippocampal place fields at the goal location in an annular water maze task. J Neurosci 21:1635–1644

    CAS  PubMed  Google Scholar 

  85. Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BRR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881–883

    Article  PubMed  PubMed Central  Google Scholar 

  86. D’Andrea JA, Adair ER, de Lorge JO (2003) Behavioral and cognitive effects of microwave exposure. Bioelectromagnetics Suppl 6:S39–S62

    Article  Google Scholar 

  87. Sharma M (2001) Investigation on β-carotene vs radiation effect on mice cerebellum (Doctoral dissertation, PhD thesis, University of Rajasthan, Jaipur)

  88. Albert EN, Sherif MF, Papadopoulos NJ, Slaby FJ, Monahan J (1981) Effect of non-ionizing radiation on the Purkinje cells of the rat cerebellum. Bioelectromagnetics 2:247–257

    Article  CAS  PubMed  Google Scholar 

  89. Rağbetl MC, Aydinlioğlu A, Koyun N, Rağbetl C, Bektas S, Ozdemır S (2010) The effect of mobile phone on the number of Purkinje cells: a stereological study. Int J Radiat Biol 86:548–554

    Article  Google Scholar 

  90. Mausset AL, de Seze R, Montpeyroux F, Privat A (2001) Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: clues from semi-quantitative immunohistochemistry. Brain Res 912:33–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The research group sincerely acknowledges the funding provided by University Grants Commission (UGC), New Delhi under the scheme of major research projects to accomplish the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Kumar Kesari.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kesari, K.K., Saxena, V.K. et al. Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain. Mol Cell Biochem 435, 1–13 (2017). https://doi.org/10.1007/s11010-017-3051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3051-8

Keywords

Navigation