Skip to main content
Log in

Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A previous study from our laboratory showed that troxerutin (TX) provides cardioprotection by mitigating lipid abnormalities in a high-fat high-fructose diet (HFFD)-fed mice model of metabolic syndrome (MS). The present study aims to investigate the reversal effect of TX on the fibrogenic changes in the myocardium of HFFD-fed mice. Adult male Mus musculus mice were grouped into four and fed either control diet or HFFD for 60 days. Each group was divided into two, and the mice were either treated or untreated with TX (150 mg/kg bw, p.o) from the 16th day. HFFD-fed mice showed marked changes in the electrocardiographic data. Increased levels of myocardial superoxide, p22phox subunit of NADPH oxidase, transforming growth factor (TGF), smooth muscle actin (α-SMA), and matrix metalloproteinases (MMPs)-9 and -2, and decreased levels of tissue inhibitors of MMPs-1 and -2 were observed. Furthermore, degradation products of troponin I and myosin light chain-1 were observed in the myocardium by immunoblotting. Rise in collagen was observed by hydroxyproline assay, while fibrotic changes were noticed by histology and Western blotting. Hypertrophy of cardiomyocytes and myocardial calcium accumulation were also observed in HFFD-fed mice. TX treatment exerted cardioprotective and anti-fibrotic effects in HFFD-fed mice by improving cardiac contractile function, reducing superoxide production and by favorably modifying the fibrosis markers. These findings suggest that TX could be cardioprotective through its antioxidant and antifibrogenic actions. This new finding could pave way for translation studies to human MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sawant A, Mankeshwar R, Shah S, Raghavan R, Dhongde G, Raje H et al (2011) Prevalence of metabolic syndrome in urban India. Cholesterol 2011. doi:10.1155/2011/920983

  2. Miller A, Adeli K (2008) Dietary fructose and metabolic syndrome. Curr opin Gastreoenterol 24:204–209

    Article  CAS  Google Scholar 

  3. Barbosa-da-Silva S, Sarmento IB, Lonzetti Bargut TC, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA (2014) Animal models of nutritional induction of type 2 diabetes mellitus. Int J Morphol 32:279–293

    Article  Google Scholar 

  4. Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V et al (2011) High-carbohydrate, high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57:611–624

    Article  PubMed  Google Scholar 

  5. Tian YQ, Li SS, Su XD, Zhang GZ, Zhao JJ, Li GW et al (2012) Effects of pioglitazone on high-fat-diet-induced ventricular remodeling and dysfunction in rats. J Cardiovasc Pharmacol Ther 17:223–228

    Article  CAS  PubMed  Google Scholar 

  6. Gradman AH, Alfayoumi F (2006) From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis 48:326–341

    Article  PubMed  Google Scholar 

  7. Hori M, Nishida K (2009) Oxidative stress and left ventricular remodeling after myocardial infarction. Cardiovasc Res 1:457–464

    Google Scholar 

  8. Sun Y (2009) Myocardial repair/remodeling following infarction: roles of local factors. Cardiovasc Res 81:482–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552

    Article  CAS  PubMed  Google Scholar 

  11. Stull LB, Matteo RG, Sweet WE, Damron DS, Moravec CS (2001) Changes in calcium cycling precede cardiac dysfunction during autoimmune myocarditis in mice. J Mol Cell Cardiol 33:449–460

    Article  CAS  PubMed  Google Scholar 

  12. Tominaga M, Matsumori A, Horie M, Yoshida H, Okada Y (1993) Activation of Ca2+ permeable cation channels by myocarditis-associated antibody in guinea pig ventricular myocytes. J Clin Invest 91:1231–1234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ärnlöv J, Ingelsson E, Sundström J, Lind L (2010) Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation 21:230–236

    Article  Google Scholar 

  14. Fan SH, Zhang ZF, Zheng YL, Lu J, Wu DM, Shan Q et al (2009) Troxerutin protects the mouse kidney from D-galactose-caused injury through anti-inflammation and anti-oxidation. Int Immunopharmacol 9:91–96

    Article  CAS  PubMed  Google Scholar 

  15. Maurya DK, Balakrishnan S, Salvi VP, Nair CK (2005) Protection of cellular DNA from c-radiation-induced damages and enhancement in DNA repair by troxerutin. Mol Cell Biochem 280:57–68

    Article  CAS  PubMed  Google Scholar 

  16. Vin F, Chabanel A, Taccoen A, Ducros J, Gruffiaz J, Hutinel B et al (1994) Double blind trial of the efficacy of troxerutin in chronic venous insufficiency. Phlebologie 9:71–78

    Google Scholar 

  17. Siegers CP, Ali SS, Tegtmeier M (2008) Aescin and troxerutin as a successful combination for the treatment of inner ear perfusion disturbances. Phytomedicine 15:160–163

    Article  CAS  PubMed  Google Scholar 

  18. Geetha R, Yogalakshmi B, Sreeja S, Bhavani K, Anuradha CV (2014) Troxerutin suppresses lipid abnormalities in the heart of high-fat–high-fructose diet-fed mice. Mol Cell Biochem 387:123–134

    Article  CAS  PubMed  Google Scholar 

  19. Bhuvaneswari S, Arunkumar E, Viswanathan P, Anuradha CV (2010) Astaxanthin restricts weight gain, promotes insulin sensitivity and curtails fatty liver disease in mice fed a obesity-promoting diet. Process Biochem 45:1406–1414

    Article  CAS  Google Scholar 

  20. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM et al (2000) Validation of the insulin sensitivity index (ISI0,120): comparison with other measures. Diabetes Res Clin Pract 47(3):177–184

    Article  CAS  PubMed  Google Scholar 

  21. Witko-Sarsat V, Friedlander M, Capeille`re-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313

    Article  CAS  PubMed  Google Scholar 

  22. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  23. Ramesh T, Begum VH (2008) Protective effect of Sesbania grandiflora against cigarette smoke-induced oxidative damage in rats. J Med Food 11:369–375

    Article  CAS  PubMed  Google Scholar 

  24. Barzegar A, Moosavi-Movahedi AA (2011) Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One 6:e26012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    Article  CAS  PubMed  Google Scholar 

  26. Yin FCP, Spurgeon HA, Rakusan K, Weisfeldt M, Lakatta EG (1982) Use of tibia length to quantify cardiac hypertophy: application in the aging rat. Am J Physiol 246:H941–H947

    Google Scholar 

  27. Makowski GS, Ramsby ML (1996) Calibrating gelatin zymograms with human gelatinase standards. Anal Biochem 236:353–356

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin’s-Phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Somaratne JB, Whalley GA, Poppe KK, ter Bals MM, Wadams G, Pearl A, Bagg W, Doughty RN (2011) Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community. Cardiovasc Diabetol 10:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP et al (2005) Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 179:43–49

    Article  CAS  PubMed  Google Scholar 

  31. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP (2004) Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279:45935–45941

    Article  CAS  PubMed  Google Scholar 

  32. Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G et al (2009) Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46:624–632

    Article  CAS  PubMed  Google Scholar 

  33. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M et al (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    Article  CAS  PubMed  Google Scholar 

  34. Karthik D, Viswanathan P, Anuradha CV (2011) Administration of rosmarinic acid reduces cardiopathology and blood Pressure through inhibition of p22phox NADPH oxidase in fructose-fed hypertensive rats. J Cardiovasc Pharmacol 58:514–521

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura T, Yamamoto E, Kataoka K, Yamashita T, Tokutomi Y, Dong YF et al (2007) Pioglitazone exerts protective effects against stroke in stroke-prone spontaneously hypertensive rats, independently of blood pressure. Stroke 38:3016–3022

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura T, Yamamoto E, Kataoka K, Yamashita T, Tokutomi Y, Dong YF et al (2008) Beneficial effects of pioglitazone on hypertensive cardiovascular injury are enhanced by combination with candesartan. Hypertension 51:296–301

    Article  CAS  PubMed  Google Scholar 

  37. Li J-W, Guo Z-X (2011) Effects of telmisartan on the expression of NADPH oxidase subunits in the myocardium of type 2 diabetic rats. Med J Chin Peoples Lib Army 36:1037–1040

    CAS  Google Scholar 

  38. Guo Z, Zhang R, Li J, Xu G (2012) Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats. Cardiovasc Diabetol 11:94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Liu SX, Hou FF, Guo ZJ, Nagai R, Zhang WR, Liu ZQ et al (2006) Advanced oxidation protein products accelerate atherosclerosis through promoting oxidative stress and inflammation. Arterioscler Thromb Vasc Biol 26:1156–1162

    Article  CAS  PubMed  Google Scholar 

  41. Blasig I, Loewe H, Ebert B (1987) Radical trapping and lipid peroxidation during myocardial reperfusion injury–radical scavenging by troxerutin in comparison to mannitol. Biomed Biochim Acta 46:S539–S544

    CAS  PubMed  Google Scholar 

  42. Blasig IE, Loewe H, Elbert B (1988) Effect of troxerutin and methionine on spin trapping of free oxy-radicals. Biomed Biochim Acta 47:S252–S255

    CAS  PubMed  Google Scholar 

  43. Wenisch C, Biffignandi PM (2001) Effect of bioflavonoids (trihydroxyethylrutin and disodium flavodate) in vitro on neutrophil reactive oxygen production and phagocytic ability assessed by flow cytometry. Curr Med Res Opin 2:123–127

    Google Scholar 

  44. Kessler M, Ubeaud G, Walter T, Sturm F, Jung L (2002) Free radical scavenging and skin penetration on troxerutin and vitamin derivatives. Dermatolog Treat 13:133–141

    Article  CAS  Google Scholar 

  45. Lee KS, Cha HJ, Lee GT, Lee KK, Hong JT, Ahn KJ et al (2014) Troxerutin induces protective effects against ultraviolet B radiation through the alteration of microRNA expression in human HaCaT keratinocyte cells. Int J Mol Med 33:934–942

    CAS  PubMed  Google Scholar 

  46. Villar AV, Cobo M, Llano M, Montalvo C, Vílchez F, Durán RM et al (2009) Plasma levels of transforming growth factor-β1 reflect left ventricular remodeling in aortic stenosis. PLoS One 12:e8476

    Article  Google Scholar 

  47. Meyer A, Wang W, Qu J, Croft L, Degen JL, Coller BS, Ahamed J (2012) Platelet TGF-β1 contributions to plasma TGF-β1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood 119:1064–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wu L, Derynck R (2009) Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Dev Cell 17:35–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Celik A, Ersoy OF, Ozkan N, Kayaoqlu HA, Ozuqurlu F, Cakir EA et al (2010) Comparison of the effects of troxerutin and heparinoid on flap necrosis. J Plast Reconstr Aesthet Surg 5:875–883

    Article  Google Scholar 

  50. Chung HK, Choi SM, Ahn BO, Kwak HH, Kim JH, Kim WB (2005) Efficacy of troxerutin on streptozotocin-induced rat model in the early stage of diabetic retinopathy. Arzneimittelforschung 55:573–580

    CAS  PubMed  Google Scholar 

  51. Lu J, Wu DM, Hu B, Zheng YL, Zhang Z, Wang YJ (2010) NGF-Dependent activation of TrkA pathway: a mechanism for the neuroprotective effect of troxerutin in D-galactose-treated mice. Brain Pathol 5:952–965

    Google Scholar 

  52. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    Article  CAS  PubMed  Google Scholar 

  53. Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E et al (2008) Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the biomarker evaluation for antioxidant therapies in stroke (BEAT-Stroke) study. Stroke 39:100–104

    Article  CAS  PubMed  Google Scholar 

  54. Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, León H et al (2009) Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77:826–834

    Article  CAS  PubMed  Google Scholar 

  55. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423

    Article  CAS  PubMed  Google Scholar 

  56. Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, Harrison DG, Tsao PS (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity role of oxidative stress. Circ Res 88:1291–1298

    Article  CAS  PubMed  Google Scholar 

  57. Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S (2001) Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J Am Coll Cardiol 38:2063–2070

    Article  CAS  PubMed  Google Scholar 

  58. Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  CAS  PubMed  Google Scholar 

  59. Tabet F, Savoia C, Schiffrin EL, Touyz RM (2004) Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 44:200–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author Rajagopalan Geetha is thankful to the Indian Council of Medical Research (ICMR), New Delhi for awarding Senior Research Fellowship (SRF) to carry out this work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carani Venkatraman Anuradha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetha, R., Radika, M.K., Priyadarshini, E. et al. Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice. Mol Cell Biochem 407, 263–279 (2015). https://doi.org/10.1007/s11010-015-2474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2474-3

Keywords

Navigation