Skip to main content
Log in

The antiatherogenic effect of bixin in hypercholesterolemic rabbits is associated to the improvement of lipid profile and to its antioxidant and anti-inflammatory effects

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypercholesterolemia and oxidative stress have been implicated in the pathophysiology of atherosclerosis and coronary artery disease. We investigated whether the carotenoid bixin (BIX) may reduce oxidative damage, inflammatory response, and the atherosclerotic lesion induced by hypercholesterolemia in rabbits. Rabbits received regular chow (control) or a hypercholesterolemic diet (0.5 % cholesterol) alone or supplemented with BIX (10, 30 or 100 mg/kg body weight, b.w.) or simvastatin (15 mg/kg b.w.) for 60 days. Treatment with BIX or simvastatin reduced the atherosclerotic lesions in cholesterol-fed rabbits (up to 55 and 96 % reduction, respectively). This protective effect of BIX was accompanied by decrease in the levels of tumor necrosis factor alpha by 15 %, interleukin 6 by 19 %, lipid peroxidation by 60 %, non-high-density lipoprotein cholesterol (non-HDL-C) by 37 %, and triglycerides by 41 %. BIX increased by 160 % the HDL-C levels and decreased by 67 % the atherogenic index of hypercholesterolemic rabbits. In atherosclerotic rabbits, the non-protein thiol groups content and the activity of the antioxidant enzymes superoxide dismutase, catalase, glutathione reductase, and thioredoxin reductase were increased in the aortic tissue, whereas paraoxonase activity was reduced in the serum. All these changes were completely prevented by BIX or simvastatin treatment. These results demonstrate that BIX reduces the extent of atherosclerotic lesions and this effect was associated with the decrease in oxidative stress, inflammatory response, and improvement of dyslipidemia, which were most effectively controlled after treatment with 10–30 mg BIX/kg b.w. BIX consumption may, therefore, be an adjuvant to prevent atherosclerosis reducing risk factors for coronary diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Douglas G, Channon KM (2014) The pathogenesis of atherosclerosis. Medicine (Baltimore). doi:10.1016/j.mpmed.2014.06.011

    Google Scholar 

  2. Jamkhande PG, Chandak PG, Dhawale SC et al (2014) Therapeutic approaches to drug targets in atherosclerosis. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 22:179–190. doi:10.1016/j.jsps.2013.04.005

    Google Scholar 

  3. Chávez-Sánchez L, Espinosa-Luna JE, Chávez-Rueda K et al (2014) Innate immune system cells in atherosclerosis. Arch Med Res 45:1–14. doi:10.1016/j.arcmed.2013.11.007

    Article  PubMed  Google Scholar 

  4. Pineda A, Cubeddu LX (2011) Statin rebound or withdrawal syndrome: does it exist? Curr Atheroscler Rep 13:23–30. doi:10.1007/s11883-010-0148-x

    Article  CAS  PubMed  Google Scholar 

  5. Puccetti L, Pasqui AL, Scarpini F et al (2011) Statins discontinuation in compliant chronic users induces atherothrombotic profile despite baseline clinical setting and treatments. Int J Cardiol 153:328–329. doi:10.1016/j.ijcard.2011.09.042

    Article  PubMed  Google Scholar 

  6. Roehrs M, Figueiredo CG, Zanchi MM et al (2014) Bixin and norbixin have opposite effects on glycemia, lipidemia, and oxidative stress in streptozotocin-induced diabetic rats. Int J Endocrinol. doi:10.1155/2014/839095

    PubMed Central  PubMed  Google Scholar 

  7. Anandhi R, Thomas PA, Geraldine P (2014) Evaluation of the anti-atherogenic potential of chrysin in Wistar rats. Mol Cell Biochem 385:103–113. doi:10.1007/s11010-013-1819-z

    Article  CAS  PubMed  Google Scholar 

  8. Lima LRP, Oliveira TT, Nagem TJ, Pacheco S (2010) Flavonoids and natural urucum dyes on induced hyperlipidemic rabbits. Rev Bras Análises Clínicas 42:69–74

    Google Scholar 

  9. Xu X, Pan J, Zhou X (2014) Amelioration of lipid profile and level of antioxidant activities by epigallocatechin-gallate in a rat model of atherogenesis. Heart Lung Circ 23:1194–1201. doi:10.1016/j.hlc.2014.05.013

    Article  PubMed  Google Scholar 

  10. Lönn ME, Dennis JM, Stocker R (2012) Actions of “antioxidants” in the protection against atherosclerosis. Free Radic Biol Med 53:863–884. doi:10.1016/j.freeradbiomed.2012.05.027

    Article  PubMed  Google Scholar 

  11. Yu X-H, Fu Y-C, Zhang D-W et al (2013) Foam cells in atherosclerosis. Clin Chim Acta 424:245–252. doi:10.1016/j.cca.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  12. Vaisi-Raygani A, Ghaneialvar H, Rahimi Z et al (2011) Paraoxonase Arg 192 allele is an independent risk factor for three-vessel stenosis of coronary artery disease. Mol Biol Rep 38:5421–5428. doi:10.1007/s11033-011-0696-3

    Article  CAS  PubMed  Google Scholar 

  13. Rajendran P, Nandakumar N, Rengarajan T et al (2014) Antioxidants and human diseases. Clin Chim Acta 436C:332–347. doi:10.1016/j.cca.2014.06.004

    Article  Google Scholar 

  14. Kaulmann A, Bohn T (2014) Carotenoids, inflammation and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res. doi:10.1016/j.nutres.2014.07.010

    PubMed  Google Scholar 

  15. Giuliano G, Rosati C, Bramley PM (2003) To dye or not to dye: biochemistry of annatto unveiled. Trends Biotechnol 21:513–516. doi:10.1016/j.tibtech.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  16. Levy LW, Regalado E, Navarrete S, Watkins RH (1997) Bixin and norbixin in human plasma: determination and study of the absorption of a single dose of annatto food color. Analyst 122:977–980. doi:10.1039/a701304c

    Article  CAS  PubMed  Google Scholar 

  17. Chisté RC, Mercadante AZ, Gomes A et al (2011) In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species. Food Chem 127:419–426. doi:10.1016/j.foodchem.2010.12.139

    Article  PubMed  Google Scholar 

  18. Montenegro MA, de Rios AO, Mercadante AZ et al (2004) Model studies on the photosensitized isomerization of bixin. J Agric Food Chem 52:367–373. doi:10.1021/jf0349026

    Article  CAS  PubMed  Google Scholar 

  19. Silva CR, Antunes LM, Bianchi ML (2001) Antioxidant action of bixin against cisplatin-induced chromosome aberrations and lipid peroxidation in rats. Pharmacol Res 43:561–566. doi:10.1006/phrs.2001.0822

    Article  CAS  PubMed  Google Scholar 

  20. Rao MP, Manjunath K, Bhagawati ST, Thippeswamy BS (2014) Bixin loaded solid lipid nanoparticles for enhanced hepatoprotection—preparation, characterisation and in vivo evaluation. Int J Pharm 473:485–492. doi:10.1016/j.ijpharm.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  21. Russell KRM, Omoruyi FO, Pascoe KO, Morrison EYSA (2008) Hypoglycaemic activity of Bixa orellana extract in the dog. Methods Find Exp Clin Pharmacol 30:301–305. doi:10.1358/mf.2008.30.4.1186073

    Article  CAS  PubMed  Google Scholar 

  22. Barcelos GRM, Angeli JPF, Serpeloni JM et al (2009) Effect of annatto on micronuclei induction by direct and indirect mutagens in HepG2 cells. Environ Mol Mutagen 50:808–814. doi:10.1002/em.20494

    Article  CAS  PubMed  Google Scholar 

  23. Agner AR, Barbisan LF, Scolastici C, Salvadori DMF (2004) Absence of carcinogenic and anticarcinogenic effects of annatto in the rat liver medium-term assay. Food Chem Toxicol 42:1687–1693. doi:10.1016/j.fct.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  24. Paumgartten FJR, De-Carvalho RR, Araujo IB et al (2002) Evaluation of the developmental toxicity of annatto in the rat. Food Chem Toxicol 40:1595–1601. doi:10.1016/S0278-6915(02)00133-3

    Article  CAS  PubMed  Google Scholar 

  25. Tully TN Jr, Tully TN, Mitchell MA (2012) A veterinary Technician’s guide to exotic animal care, 2nd ed. Can Vet J 43:257

    Google Scholar 

  26. Manning PJ, Ringler DH, Newcomer CE (1994) The biology of the laboratory rabbit, 2nd edn. Academic Press, Waltham, p 483

    Google Scholar 

  27. Bolayirli IM, Aslan M, Balci H et al (2007) Effects of atorvastatin therapy on hypercholesterolemic rabbits with respect to oxidative stress, nitric oxide pathway and homocysteine. Life Sci 81:121–127. doi:10.1016/j.lfs.2007.04.027

    Article  CAS  PubMed  Google Scholar 

  28. Haidari M, Ali M, Gangehei L et al (2010) Increased oxidative stress in atherosclerosis-predisposed regions of the mouse aorta. Life Sci 87:100–110. doi:10.1016/j.lfs.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  29. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi:10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  30. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  31. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  32. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  33. Carlberg I, Mannervik B (1979) Inhibition of glutathione reductase by interaction of 2,4,6-trinitrobenzenesulfonate with the active-site dithiol. FEBS Lett 98:263–266. doi:10.1016/0014-5793(79)80196-9

    Article  CAS  PubMed  Google Scholar 

  34. Holmgren A, Björnstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208. doi:10.1016/0076-6879(95)52023-6

    Article  CAS  PubMed  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  36. Augusti PR, Conterato GMM, Somacal S et al (2009) Astaxanthin reduces oxidative stress, but not aortic damage in atherosclerotic rabbits. J Cardiovasc Pharmacol Ther 14:314–322. doi:10.1177/1074248409350136

    Article  CAS  PubMed  Google Scholar 

  37. Buja LM (2014) Nikolai N. Anitschkow and the lipid hypothesis of atherosclerosis. Cardiovasc Pathol 23:183–184. doi:10.1016/j.carpath.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  38. Pereira T (2012) Dyslipidemia and cardiovascular risk: lipid ratios as risk factors for cardiovascular disease. In: Kelishadi R (ed) Dyslipidemia—from prev. to treat. InTech, Rijeka, pp 279–302

    Google Scholar 

  39. Song S, Ovbiagele B (2009) Management of risk factors for accelerated atherosclerosis. Curr Treat Options Neurol 11:460–472. doi:10.1007/s11940-009-0050-4

    Article  PubMed  Google Scholar 

  40. Lima LRP, Oliveira TT, Nagem TJ et al (2008) Therapeutic action and inocuity on the metabolism of quercetin, bixin and norbixin in rabbits hyperlipidemics. Tecnol Ciência Agropecuária 2:51–56

    Google Scholar 

  41. Santos AA, Silva MV, Guerreiro LT et al (2002) Influence of norbixin on plasma cholesterol-associated lipoproteins, plasma arylesterase/paraoxonase activity and hepatic lipid peroxidation of Swiss mice on a high fat diet. Food Chem 77:393–399. doi:10.1016/S0308-8146(01)00363-6

    Article  CAS  Google Scholar 

  42. Matuo MC, Takamoto RTO, Kikuchi IS, Pinto TJA (2013) Effect of bixin and norbixin on the expression of cytochrome P450 in HepG2 cell line. Cell Biol Int 37:843–848. doi:10.1002/cbin.10108

    Article  CAS  PubMed  Google Scholar 

  43. Goto T, Takahashi N, Kato S et al (2012) Bixin activates PPARα and improves obesity-induced abnormalities of carbohydrate and lipid metabolism in mice. J Agric Food Chem 60:11952–11958. doi:10.1021/jf303639f

    Article  CAS  PubMed  Google Scholar 

  44. Eliasson B, Cederholm J, Eeg-Olofsson K et al (2011) Clinical usefulness of different lipid measures for prediction of coronary heart disease in type 2 diabetes: a report from the Swedish National Diabetes Register. Diabetes Care 34:2095–2100. doi:10.2337/dc11-0209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538. doi:10.1016/0003-9861(89)90467-0

    Article  PubMed  Google Scholar 

  46. Van Diepen JA, Berbée JFP, Havekes LM, Rensen PCN (2013) Interactions between inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis. Atherosclerosis 228:306–315. doi:10.1016/j.atherosclerosis.2013.02.028

    Article  PubMed  Google Scholar 

  47. Takahashi N, Goto T, Taimatsu A et al (2009) Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARgamma activation. Biochem Biophys Res Commun 390:1372–1376. doi:10.1016/j.bbrc.2009.10.162

    Article  CAS  PubMed  Google Scholar 

  48. Choi J-M, Bothwell ALM (2012) The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cells 33:217–222. doi:10.1007/s10059-012-2297-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Calabrese EJ (2008) Hormesis and medicine. Br J Clin Pharmacol 66:594–617. doi:10.1111/j.1365-2125.2008.03243.x

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Van Diepen JA, Wong MC, Guigas B et al (2011) Hepatocyte-specific IKK-β activation enhances VLDL-triglyceride production in APOE*3-Leiden mice. J Lipid Res 52:942–950. doi:10.1194/jlr.M010405

    Article  PubMed Central  PubMed  Google Scholar 

  51. Thiruchenduran M, Vijayan NA, Sawaminathan JK, Devaraj SN (2011) Protective effect of grape seed proanthocyanidins against cholesterol cholic acid diet-induced hypercholesterolemia in rats. Cardiovasc Pathol 20:361–368. doi:10.1016/j.carpath.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  52. Ishii T, Itoh K, Ruiz E et al (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94:609–616. doi:10.1161/01.RES.0000119171.44657.45

    Article  CAS  PubMed  Google Scholar 

  53. Aviram M, Rosenblat M, Billecke S et al (1999) Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med 26:892–904. doi:10.1016/S0891-5849(98)00272-X

    Article  CAS  PubMed  Google Scholar 

  54. Sposito AC, Carvalho LSF, Cintra RMR et al (2009) Rebound inflammatory response during the acute phase of myocardial infarction after simvastatin withdrawal. Atherosclerosis 207:191–194. doi:10.1016/j.atherosclerosis.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  55. Sabuhi R, Ali Q, Asghar M et al (2011) Role of the angiotensin II AT2 receptor in inflammation and oxidative stress: opposing effects in lean and obese Zucker rats. Am J Physiol Renal Physiol 300:F700–F706. doi:10.1152/ajprenal.00616.2010

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by fellowships from National Council for Scientific and Technological Development (CNPq) and Co-ordination for the Improvement of Higher Education Staff (CAPES) and had financial support from CNPq (475597/2010-9 and 552440/2011-6) and Edital Capes 11/2009 and 27/2010 - Pró-Equipamentos Institucional. The authors thank Christian Hansen Co., Ltd., Denmark, for the kind donation of the BIX product and Doles, Brazil, for the kind donation of biochemical kits.

Conflict of interest

All authors declare that there are no funding sources, employment, or personal financial competing interests that could influence the position presented in this manuscript. In addition, authors are not aware of any institutional competing interest of any nature or kind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Emanuelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somacal, S., Figueiredo, C.G., Quatrin, A. et al. The antiatherogenic effect of bixin in hypercholesterolemic rabbits is associated to the improvement of lipid profile and to its antioxidant and anti-inflammatory effects. Mol Cell Biochem 403, 243–253 (2015). https://doi.org/10.1007/s11010-015-2354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2354-x

Keywords

Navigation