Skip to main content

Advertisement

Log in

The association between RANKL and Osteoprotegerin gene polymorphisms with breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Breast cancer is the most common cause of cancer death among women (522,000 deaths in 2012). Imbalance between RANKL and OPG is observed in many cancers, including breast cancer. Consequently, SNPs in the genes of RANKL and OPG may be involved in breast cancer development. This study included 276 subjects. Group I (n = 100) healthy females as a control group, group II (n = 96) breast cancer patients without bone metastases, and group III (n = 80) breast cancer patients with bone metastases. RANKL rs9533156, OPG rs2073618, and OPG rs2073617 SNPs and their serum protein levels were studied for a possible association with breast cancer development. The allele frequency [(OR: 4.832 CI 2.18–10.71, P = 0.001) and genotype distribution (P = 0.001)] of OPG SNP rs2073618 showed a highly significant difference between breast cancer patients and healthy controls. The allele C is more common in breast cancer patients. The allele frequency [(OR: 0.451 CI 0.232–0.879, P = 0.018) and genotype distribution (P = 0.003)] of RANKL SNP rs9533156 differed significantly between breast cancer patients and healthy controls. The allele T is more common in breast cancer patients. The allele frequency [(OR: 0.36 CI 0.184–0.705, P = 0.002) and genotype distribution (P = 0.011)] of OPG SNP rs2073617 differed significantly between breast cancer patients and healthy controls. The allele T is more common in breast cancer patients. The C allele of OPG SNP rs2073618 may be associated with breast cancer development. No association was found between any of the SNPs and the serum protein levels of RANKL and OPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (2013) Latest world cancer statistics, Global cancer burden rises to 14.1 million new cases in 2012: Marked increase in breast cancers must be addressed, Press release N° 223, http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr223_E.pdf. Accessed 16 January 2015

  2. Wong B, Rho J, Arron J (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194

    Article  CAS  PubMed  Google Scholar 

  3. Lacey D, Timms E, Tan H, Kelley M, Dunstan C, Burgess T et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  4. Simonet W, Lacey D, Dunstan C, Kelly M, Chang M, Luthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  5. Boyce B, Xing L (2007) Biology of RANK, RANKL and osteoprotegerin. Arthritis Res Ther 9:1–7

    Article  Google Scholar 

  6. Lacey D, Tan H, Lu J, Kaufman S, Van G, Qiu W et al (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Li J, Sarosi I, Yan X, Morony S, Capparelli C, Tan H et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis, and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Matsuzaki K, Udagawa N, Takahashi N, Yamaguchi K, Yasuda H (1998) Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun 246:199–204

    Article  CAS  PubMed  Google Scholar 

  9. Roodman G (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  CAS  PubMed  Google Scholar 

  10. Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F (2011) Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. J Cell Physiol 226:780–784

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Suarez E, Jacob A, Jones J, Miller R, Roudier-Meyer M, Erwert R et al (2010) RANK ligand mediates progestin induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107

    Article  CAS  PubMed  Google Scholar 

  12. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik J, Lee H et al (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468:98–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC et al (2012) Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401–419

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Dai J, Qi Y, Lin DL, Smith P et al (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107:1235–1244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Quinn JE, Brown LG, Zhang J, Keller ET, Vessella RL et al (2005) Comparison of fc-osteoprotegerin and zoledronic acid activities suggests that zoledronic acid inhibits prostate cancer in bone by indirect mechanisms. Prostate Cancer Prostatic Dis 8:253–259

    Article  CAS  PubMed  Google Scholar 

  16. Whang PG, Schwarz EM, Gamradt SC, Dougall WC, Lieberman JR (2005) The effects of rank blockade and osteoclast depletion in a model of pure osteoblastic prostate cancer metastasis in bone. J Orthop Res 23:1475–1483

    Article  CAS  PubMed  Google Scholar 

  17. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802

    Article  CAS  PubMed  Google Scholar 

  18. Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D et al (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci USA 107:2989–2994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA et al (2010) Progesterone induces adult mammary stem cell expansion. Nature 465:803–807

    Article  CAS  PubMed  Google Scholar 

  20. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ et al (2011) Tumour infiltrating regulatory t cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470:548–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. McGonigle JS, Giachelli CM, Scatena M (2009) Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis 12:35–46

    Article  CAS  PubMed  Google Scholar 

  22. Fisher JL, Thomas-Mudge RJ, Elliott J, Hards DK, Sims NA et al (2006) Osteoprotegerin overexpression by breast cancer cells enhances orthotopic and osseous tumor growth and contrasts with that delivered therapeutically. Cancer Res 66:3620–3628

    Article  CAS  PubMed  Google Scholar 

  23. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K et al (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139

    Article  CAS  PubMed  Google Scholar 

  24. Edge S, Byrd D, and Compton C (eds) (2010) AJCC cancer staging manual, 7th edn. Springer, New York, p 347–376

  25. Ney J, Juhasz-Boess I, Gruenhage F, Graeber S, MariaBohle R, Pfreundschuh M et al (2013) Genetic polymorphism of the OPG gene associated with breast cancer. BMC Cancer 13(1):40–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Narita N, Yuasa T, Tsuchiya N, Kumazawa T, Narita S, Inoue T et al (2008) A genetic polymorphism of the osteoprotegerin gene is associated with an increased risk of advanced prostate cancer. BMC Cancer. doi:10.1186/1471-2407-8-224

    PubMed Central  PubMed  Google Scholar 

  27. Arko B, Prezelj J, Komel R, Kocijancic A, Hudler P, Marc J (2002) Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 87:4080–4084

    Article  CAS  PubMed  Google Scholar 

  28. Ohmori H, Makita Y, Funamizu M, Hirooka K, Hosoi T, Orimo H, Suzuki T, Ikari K, Nakajima T, Inoue I, Hata A (2002) Linkage and association analyses of the osteoprotegerin gene locus with human osteoporosis. J Hum Genet 47:400–406

    Article  CAS  PubMed  Google Scholar 

  29. Jorgensen HL, Kusk P, Madsen B, Fenger M, Lauritzen JB (2004) Serum osteoprotegerin (OPG) and the A163G polymorphism in the OPG promoter region are related to peripheral measures of bone mass and fracture odds ratios. J Bone Miner Metab 22:132–138

    Article  CAS  PubMed  Google Scholar 

  30. Roshandel D, Holliday KL, Pye SR, Boonen S, Borghs H et al (2010) Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. J Bone Miner Res 25:1830–1838

    Article  CAS  PubMed  Google Scholar 

  31. Hsu YH, Niu T, Terwedow HA, Xu X, Feng Y et al (2006) Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum Genet 118:568–577

    Article  CAS  PubMed  Google Scholar 

  32. Katz J, Gong Y, Salmasinia D, Hou W, Burkley B et al (2011) Genetic polymorphisms and other risk factors associated with bisphosphonate induced osteonecrosis of the jaw. Int J Oral Maxillofac Surg 40:605–611

    Article  CAS  PubMed  Google Scholar 

  33. Pitocco D, Zelano G, Gioffre G, Di Stasio E, Zaccardi F et al (2009) Association between osteoprotegerin G1181C and T245G polymorphisms and diabetic charcot neuroarthropathy: a case-control study. Diabetes Care 32:1694–1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Huang CH, Wei JC, Hung PS, Shiu LJ, Tsay MD et al (2011) Osteoprotegerin genetic polymorphisms and age of symptom onset in ankylosing spondylitis. Rheumatology 50:359–365

    Article  CAS  PubMed  Google Scholar 

  35. Assmann G, Koenig J, Pfreundschuh M, Epplen JT, Kekow J et al (2010) Genetic variations in genes encoding RANK, RANKL, and OPG in rheumatoid arthritis: a case-control study. J Rheumatol 37:900–904

    Article  CAS  PubMed  Google Scholar 

  36. Rhee EJ, Yun EJ, Oh KW, Park SE, Park CY et al (2010) The relationship between receptor activator of nuclear factor-kappaB ligand (RANKL) gene polymorphism and aortic calcification in korean women. Endocr J 57:541–549

    Article  CAS  PubMed  Google Scholar 

  37. Chung PY, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F et al (2010) Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget’s disease of bone. J Bone Miner Res 25:2592–2605

    Article  PubMed  Google Scholar 

  38. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M et al (2007) A genomewide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bonifaci N, Palafox M, Pellegrini P, Osorio A, Benitez J et al (2011) Evidence for a link between TNFRSF11A and risk of breast cancer. Breast Cancer Res Treat 129:947–954

    Article  CAS  PubMed  Google Scholar 

  41. Chu LW, Meyer TE, Li Q, Menashe I, Yu K et al (2010) Association between genetic variants in the 8q24 cancer risk regions and circulating levels of androgens and sex hormone-binding globulin. Cancer Epidemiol Biomarkers Prev 19:1848–1854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A et al (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39:989–994

    Article  CAS  PubMed  Google Scholar 

  43. Holen I, Shipman C (2006) Role of osteoprotegrin (OPG) in cancer. Clin Sci 110:279–291

    Article  CAS  PubMed  Google Scholar 

  44. Rachner T, Singh S, Schoppet M, Benad P, Bornhouser M et al (2010) Zoledronic acid induces apoptosis and changes the TRAIL/OPG ratio in breast cancer cells. Cancer Lett 287:109–116

    Article  CAS  PubMed  Google Scholar 

  45. Schubert A, Schulz H, Emons G, Gründker C (2008) Expression of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand (RANKL) in HCC70 breast cancer cells and effects of treatment with gonadotropin-releasing hormone on RANKL expression. Gynecol Endocrinol 6:331–338

    Article  Google Scholar 

  46. Lipton A, Ali SM, Leitzel K et al (2002) Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 8:2306–2310

    CAS  PubMed  Google Scholar 

  47. Reinholz M, Iturria S, Roche P (2002) Differential gene expression of TGF-β family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat 74:255–269

    Article  CAS  PubMed  Google Scholar 

  48. Martinetti A, Bajetta E, Ferrari L, Zilembo N, Seregni E et al (2004) Osteoprotegerin and osteopontin serum values in postmenopausal advanced breast cancer patients treated with anastrozole. Endocr Relat Cancer 11:771–779

    Article  CAS  PubMed  Google Scholar 

  49. Shipman CM, Croucher P (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 63:912–916

    CAS  PubMed  Google Scholar 

  50. Ibrahim T, Sacanna E, Gaudio M, Mercatali L, Scarpi E et al. (2011) Role of RANK, RANKL, OPG, and CXCR4 Tissue Markers in Predicting Bone Metastases in Breast Cancer Patients. Clinical Breast Cancer; 11: 369–375. http://dx.doi.org/10.1016/j.clbc.2011.05.001

  51. Zlatibor A, Vuka K, Dragan M, Aleksandar P, Ivan B (2004) RANKL/RANK/osteoprotegerin system as novel therapeutic target in the treatment of primary bone tumors and osteolytic metastases. Arch Oncol 12:112–114

    Article  Google Scholar 

  52. Guise T, Kozlow W, Heras-Herzing A, Padalecki S, Yin J, Chirgwin J (2005) Molecular mechanisms of breast cancer Metastases to bone. Clin Breast Cancer 5:46–53

    Article  Google Scholar 

  53. Kapor P, Suva L, Welch H, Donahue D (2008) Osteoprotegrin and the bone homing and colonization potential of breast cancer cells. J Cell Biochem 103:30–34

    Article  Google Scholar 

  54. Good C, Keefe R, Puzas J, Schwarz E, Rosier R (2002) Immunohistochemical study of receptor activator of nuclear factor Kappa-B ligand (RANK-L) in human osteolytic bone tumors. J Surg Oncol 79:174–179

    Article  PubMed  Google Scholar 

  55. Huang L, Cheng Y, Chow L, Zheng M, Kumta S (2002) Tumor cells produce receptor activator of NF-kB ligand (RANKL) in skeletal metastasis. J Clin Pathol 55:877–878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Farrugia AN, Atkins GJ, To LB et al (2003) Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in-vivo. Cancer Res 63:5438–5445

    CAS  PubMed  Google Scholar 

  57. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti M et al (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163:2021–2031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Bhatia P, Sanders MM, Hansen MF (2005) Expression of receptor activator of nuclear factor kappaB is inversely correlated with metastatic phenotype in breast carcinoma. Clin Cancer Res 11:162–165

    CAS  PubMed  Google Scholar 

  59. Lau YS, Dansk L, Sun SG, Fox S, Sabokbar A, Harris A, Athanasou NA (2007) RANKL-dependent and RANKL independent mechanisms of macrophage-osteoclast differentiation in breast cancer. Breast Cancer Res Treat 105(1):7–16

    Article  CAS  PubMed  Google Scholar 

  60. Labovsky V, Vallone V, Martinez L, Otaegui J, Chasseing N et al (2012) Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Int 12:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Cross S, Harrison R, Balasubramanian S, Lippitt J, Evans C, Reed M et al (2006) Expression of receptor activator of nuclear factor kappabeta ligand (RANKL) and tumor necrosis factor related, apoptosis inducing ligand (TRAIL) in breast cancer, and their relations with osteoprotegerin, estrogen receptor, and clinicopathological variables. J Clin Pathol 59:716–720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Leeming D, Koizumi M, ByrjalsenI Li B, Qvist P et al (2006) The relative use of eight collagenous and non- collagenous markers for diagnosis of skeletal metastases in breast, prostate, or lung cancer patients. Cancer Epidemiol Biomarkers Prev 15:32–38

    Article  CAS  PubMed  Google Scholar 

  63. Zhao H, Liu J, Ning G (2005) The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos Int 16:1519–1524

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba S. Omar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, H.S., Shaker, O.G., Nassar, Y.H. et al. The association between RANKL and Osteoprotegerin gene polymorphisms with breast cancer. Mol Cell Biochem 403, 219–229 (2015). https://doi.org/10.1007/s11010-015-2352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2352-z

Keywords

Navigation