Skip to main content
Log in

Invariants of families of flat connections using fiber integration of differential characters

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(E\rightarrow B\) be a smooth vector bundle of rank n, and let \(P \in I^p(GL(n,{\mathbb {R}}))\) be a \(GL(n,{\mathbb {R}})\)-invariant polynomial of degree p compatible with a universal integral characteristic class \( u \in H^{2p}(BGL(n,{\mathbb {R}}),{\mathbb {Z}})\). Cheeger–Simons theory associates a rigid invariant in \(H^{2p-1}(B,{\mathbb {R}}/{\mathbb {Z}})\) to any flat connection on this bundle. Generalizing this result, Jaya Iyer (Lett Math Phys 106 (1):131–146, 2016) constructed maps \(H_r({\mathcal {D}}(E)) \rightarrow H^{2p-r-1}(B,{\mathbb {R}}/{\mathbb {Z}})\) for \(p>r+1\). Here, \({\mathcal {D}}(E)\) is the simplicial abelian group whose group of r-simplices is freely generated by \((r+1)\)-tuples of relatively flat connections. In this article, we construct such maps for the cases \(p<r\) and \(p>r+1\) using fiber integration of differential characters. We find that for \(p>r+1\) case, the invariants constructed here coincide with those obtained by Jaya Iyer, and that in the \(p<r\) case the invariants are trivial. We further compare our construction with other results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [17], the results are stated for the case \(p > r\). However, to the best of our understanding, this is an error, and the results there hold for \(p > r+1\). See remark 3 .

References

  1. Bär, C., Becker, C.: Differential Characters and Geometric Chains, pp. 1–90. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-07034-6_1

    Book  MATH  Google Scholar 

  2. Becker, C.: Cheeger–Chern–Simons theory and differential string classes. Ann. Henri Poincaré 17(6), 1529–1594 (2016). https://doi.org/10.1007/s00023-016-0485-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Biswas, I., López, M.C.: Flat connections and cohomology invariants. Math. Nachr. 290(14–15), 2170–2184 (2017)

    Article  MathSciNet  Google Scholar 

  4. Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces, i. Am. J. Math. 80(2), 458–538 (1958)

    Article  MathSciNet  Google Scholar 

  5. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82. Springer, Berlin (1982)

    Book  Google Scholar 

  6. Castrillón López, M., Ferreiro Pérez, R.: Differential characters and cohomology of the moduli of flat connections. Lett. Math. Phys. (2018). https://doi.org/10.1007/s11005-018-1095-7

    Article  MATH  Google Scholar 

  7. Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology, pp. 50–80. Springer, Berlin (1985)

    Google Scholar 

  8. Chern, S.S.: On the characteristic classes of complex sphere bundles and algebraic varieties. Am. J. Math. 75(3), 565–597 (1953)

    Article  MathSciNet  Google Scholar 

  9. Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. 2(99), 48–69 (1974). https://doi.org/10.2307/1971013

    Article  MathSciNet  MATH  Google Scholar 

  10. Dupont, J.L., Kamber, F.W.: Gerbes, simplicial forms and invariants for families of foliated bundles. Commun. Math. Phys. 253(2), 253–282 (2005). https://doi.org/10.1007/s00220-004-1193-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dupont, J.L., Ljungmann, R.: Integration of simplicial forms and deligne cohomology. Math. Scand. 97(1), 11–39 (2005). https://doi.org/10.7146/math.scand.a-14961

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewald, C.: Hochschild homology, and de rham cohomology of stratifolds. Ph.D. thesis, Universitä Heidelberg (2002)

  13. Ewald, C.: A de rham isomorphism in singular cohomology and stokes theorem for stratifolds. Int. J. Geom. Methods Mod. Phys. 2(1), 63–81 (2005)

    Article  MathSciNet  Google Scholar 

  14. Freed, D.S.: Classical Chern–Simons theory. ii. Houst. J. Math. 28(2), 293–310 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Gomi, K., Terashima, Y.: A fiber integration formula for the smooth deligne cohomology. Int. Math. Res. Not. 2000(13), 699–708 (2000). https://doi.org/10.1155/S1073792800000386

    Article  MathSciNet  MATH  Google Scholar 

  16. Guruprasad, K., Kumar, S.: A new geometric invariant associated to the space of flat connections. Compos. Math. 73(2), 199–222 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Iyer, J.N.N.: Cohomological invariants of a variation of flat connections. Lett. Math. Phys. 106(1), 131–146 (2016). https://doi.org/10.1007/s11005-015-0807-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kreck, M.: Differential Algebraic Topology, From Stratifolds to Exotic Spheres, Graduate Studies in Mathematics, vol. 110. American Mathematical Society, Providence (2010). https://doi.org/10.1090/gsm/110

    Book  MATH  Google Scholar 

  19. Ljungmann, R.: Secondary invariants for families of bundles. Ph.D. thesis (2006)

  20. Narasimhan, M.S., Ramanan, S.: Existence of universal connections. Am. J. Math. 83(3), 563–572 (1961)

    Article  MathSciNet  Google Scholar 

  21. Tu, L.W.: Differential Geometry. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-55084-8

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I am thankful to my supervisor Dr. Rishikesh Vaidya for discussions and support. I wish to profusely thank the anonymous reviewer whose feedback significantly helped improve the presentation. I am financially supported by the Council of Scientific & Industrial Research-Human Resource Development Group (CSIR-HRDG) under the CSIR-SRF(NET) scheme. I am grateful to CSIR-HRDG for the same.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishan Mata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mata, I. Invariants of families of flat connections using fiber integration of differential characters. Lett Math Phys 110, 639–657 (2020). https://doi.org/10.1007/s11005-019-01234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01234-3

Keywords

Mathematics Subject Classification

Navigation