Skip to main content
Log in

Analytical approximation to the solution of 3D rotating MHD system

  • Original Paper
  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using energy methods and large Sobolev indexes, we prove analytically that for prepared initial velocity, in the case of high speed, we can solve the three-dimensional fully nonlinear rotating magnetohydrodynamic system by solving only its linear part and the two-dimensional Navier–Stokes equation. This procedure makes things easier in practice for physicists and engineers. Mathematically, our argument can be extended to other rotating fluid dynamics system and it can be proved for less regular data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benameur, J., Ibrahim, S., Majdoub, M.: Asymptotic study of a magneto-hydrodynamic system. Differ. Integral Equ. 18(3), 299–324 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Benameur, J., Ghazel, M., Majdoub, M.: Asymptot. Anal. 41, 1–21 (2005)

    MathSciNet  Google Scholar 

  3. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An Introduction to Rotating Fluids and to the Navier–Stokes Equations. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  4. Desjardins, B., Dormy, E., Grenier, E.: Stability of mixed Ekman–Hartmann boundary layers. Nonlinearity 12(2), 181–199 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dormy, E.: Modelisation numérique de la dynamo terrestre. Thèse de Doctorat, Institut de Physique du Globe de Paris, Paris (1997)

  6. Giga, Y.: Weak and strong solutions of the Navier–Stokes initial value problem. Publ. RIMS Kyoto Univ. 19, 887–910 (1983)

    Article  MathSciNet  Google Scholar 

  7. Kato, T.: Nonstationary flows of viscous and ideal fluids in \(R^3\). J. Funct. Anal. 9, 296–305 (1972)

    Article  Google Scholar 

  8. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  9. Lions, J.L., Prodi, G.: Un théorème d’existence et d’unicité dans les équations de Navier-Stokes en dimension 2. C. R. Acad. Sci. Paris 248, 3519–3521 (1959)

    MathSciNet  MATH  Google Scholar 

  10. Selmi, R.: Convergence results for MHD system. Int. J. Math. Math. Sci. Article ID 28704, 1–19 (2006). https://doi.org/10.1155/IJMMS/2006/28704

    Article  MathSciNet  Google Scholar 

  11. Selmi, R.: Asymptotic study of mixed rotating MHD system. Bull. Korean Math. Soc. 47(2), 231–249 (2010). https://doi.org/10.4134/BKMS.2010.47.2.231

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Selmi, R.: Global well-posedness and convergence results for the 3D-regularized boussinesq system. Can. J. Math. 64(6), 1415–1435 (2012)

    Article  MathSciNet  Google Scholar 

  13. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Selmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmi, R. Analytical approximation to the solution of 3D rotating MHD system. Lett Math Phys 110, 365–370 (2020). https://doi.org/10.1007/s11005-019-01219-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01219-2

Keywords

Mathematics Subject Classification

Navigation