Skip to main content
Log in

Global well-posedness of the 3D generalized rotating magnetohydrodynamics equations

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we establish the global well-posedness of the generalized rotating magnetohydrodynamics equations if the initial data are in X1−2α defined by \({x^{1 - 2\alpha }} = \left\{ {u \in D'\left( {{R^3}} \right):{{\int_{{R^3}} {\left| \xi \right|} }^{1 - 2\alpha }}\left| {\hat u\left( \xi \right)} \right|d\xi < + \infty } \right\}\). In addition, we also give Gevrey class regularity of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids. Asymptot. Anal., 15, 103–150 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J., 48, 1133–1176 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J., 50, 1–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bae, H.: Existence and Analyticity of Lei–Lin Solution to the Navier–Stokes Equations. Proc. Amer. Math. Soc., 143, 2887–2892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin, J. Y., Desjardins, B., Gallagher, I., et al.: Anisotropy and dispersion in rotating fluids. Stud. Math. Appl., 31, 171–192 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Chemin, J. Y., Desjardins, B., Gallagher, I., et al.: Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations, Oxford Lecture Series in Mathematics and its Applications 32, Oxford University Press, Oxford, 2006

    MATH  Google Scholar 

  7. Chemin, J. Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in R3. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 599–624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin, J. Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Amer. Math. Soc., 362, 2859–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duvaut, G., Lions, J. L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal., 46, 241–279 (1972)

    Article  MATH  Google Scholar 

  10. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal., 87, 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallay, Th., Sverak, V.: Remarks on the Cauchy problem for the axisymmetric Navier–Stokes equations. Confluentes Mathematici, 7, 67–92 (2015)

    Article  MATH  Google Scholar 

  12. Hieber, M., Shibata, Y.: The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework. Math. Z., 265, 481–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iwabuchi, T., Takada, R.: Global solutions for the Navier–Stokes equations in the rotational framework. Math. Ann., 357, 727–741 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iwabuchi, T., Takada, R.: Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type. J. Funct. Anal., 267, 1321–1337 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ladyzhenskaya, O. A.: Unique global solvability of the three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry (in Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 7, 155–177 (1968)

    Google Scholar 

  16. Lei, Z.: On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differential Equations, 259, 3202–3215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lei, Z., Lin, F.: Global mild solutions of Navier–Stokes equations. Comm. Pure Appl. Math., 64, 1297–1304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lemarié-Rieusset, P. G.: Recent developments in the Navier–Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002

    MATH  Google Scholar 

  19. Lions, J. L.: Quelques méthodes de résolution des problémes aux limites nonlinéaires, Donud, Paris, 1969

    MATH  Google Scholar 

  20. Mahalov, A., Titi, E. S., Leibovich, S.: Invariant helical subspaces for the Navier–Stokes equations. Arch. Ration. Mech. Anal., 112, 193–222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seregin, G., Šverák, V.: On type I singularities of the local axisymmetric solutions of the Navier–Stokes equations. Comm. Partial Differential Equations, 34(1–3), 171–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, W., Wu, G.: Global mild solution of the generalized Navier–Stokes equations with the Coriolis force. Appl. Math. Lett., 76, 181–186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Y., Wang, K.: Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal. Real World Appl., 17, 245–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, J.: The generalized incompressible Navier–Stokes equations in Besov spaces. Dyn. Partial Differ. Equ., 1, 381–400 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, J.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces. Comm. Math. Phys., 3, 803–831 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, J.: Viscous and inviscid magnetohydrodynamics equations. J. Anal. Math., 73, 251–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, J.: Bounds and new approches for the 3D MHD equations. J. Nonlinear Sci., 12, 395–413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, J.: Generalized MHD equations. J. Differ. Equ., 195, 284–312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, J.: Regularity results for weak solutions of the 3D MHD equations. Discrete Contin. Dyn. Syst., 10, 543–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, J.: Regularity criteria for the generalized MHD equations. Comm. Partial Differential Equations, 33, 285–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ye, Z.: Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann. Mat. Pura Appl., 195, 1111–1121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, P., Zhang, T.: Global axisymmetric solutions to three-dimensional Navier–Stokes system. Int. Math. Res. Not., 2014(3), 610–642 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their time and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hua Wang.

Additional information

Supported by NSFC (Grant Nos. 11471309 and 11771423) and NSFC of Fujian (Grant No. 2017J01564)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.H., Wu, G. Global well-posedness of the 3D generalized rotating magnetohydrodynamics equations. Acta. Math. Sin.-English Ser. 34, 992–1000 (2018). https://doi.org/10.1007/s10114-017-7276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-017-7276-y

Keywords

MR(2010) Subject Classification

Navigation