Skip to main content

Advertisement

Log in

Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 28 August 2014

Abstract

A generalized interpolation framework using radial basis functions (RBF) is presented that implicitly models three-dimensional continuous geological surfaces from scattered multivariate structural data. Generalized interpolants can use multiple types of independent geological constraints by deriving for each, linearly independent functionals. This framework does not suffer from the limitations of previous RBF approaches developed for geological surface modelling that requires additional offset points to ensure uniqueness of the interpolant. A particularly useful application of generalized interpolants is that they allow augmenting on-contact constraints with gradient constraints as defined by strike-dip data with assigned polarity. This interpolation problem yields a linear system that is analogous in form to the previously developed potential field implicit interpolation method based on co-kriging of contact increments using parametric isotropic covariance functions. The general form of the mathematical framework presented herein allows us to further expand on solutions by: (1) including stratigraphic data from above and below the target surface as inequality constraints (2) modelling anisotropy by data-driven eigen analysis of gradient constraints and (3) incorporating additional constraints by adding linear functionals to the system, such as fold axis constraints. Case studies are presented that demonstrate the advantages and general performance of the surface modelling method in sparse data environments where the contacts that constrain geological surfaces are rarely exposed but structural and off-contact stratigraphic data can be plentiful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beatson RK, Cherrie JB, McLennan TJ, Mitchell TJ, Carr JC, Fright WR, McCallum BC (2004) Surface reconstruction via smoothest restricted range approximation. In: Neamtu M, Lucian ML (eds) Geometric modeling and computing. Nashboro Press, Brentwood, pp 41–52

  • Beatson RK, Greengard L (1997) A short course on fast multipole methods. In: Ainsworth M, Levesley J, Light WA, Marletta M (eds) Wavelets, multilevel methods and elliptic PDEs. Oxford University Press, Oxford, pp 1–37

  • Beatson RK, Light WA, Billings S (2000) Fast solution of the radial basis function interpolation equations: domain decomposition methods. SIAM J Sci Comput 22(5):1717–1740

    Article  Google Scholar 

  • Beatson RK, Powell MJD, Tan AM (2007) Fast evaluation of polyharmonic splines in three dimensions. IMA J Numer Anal 27:427–450

    Article  Google Scholar 

  • Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4(1):1–51

    Article  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations. vol 12. Cambridge University Press, Cambridge

  • Calcagno P, Chilès JP, Courrioux G, Guillen A (2008) Geological modelling from field data and geological knowledge: part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys Earth Planet Inter 171(1):147–157

  • Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46(3):167–174

    Google Scholar 

  • Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, Evans TR (2001) Reconstruction and representation of 3D objects with radial basis functions. In: ACM SIGGRAPH 2001, Computer graphics proceedings. ACM Press, New York, pp 67–76

  • Carr JC, Beatson RK, McCallum BC, Fright WR, McLennan TJ, Mitchell TJ (2003) Smooth surface reconstruction from noisy range data. In: Proceedings of the 1st international conference on computer graphics and interactive techniques in Australasia and South, East Asia, pp 119-ff

  • Caumon G, Antoine C, Tertois AL (2007) Building 3D geological surfaces from field data using implicit surfaces. In: Proceedings of the 27th Gocad Meeting, Nancy, France

  • Caumon G, Collon-Drouaillet P, Carlier Le, de Veslud C, Viseur S, Sausse J (2009) Surface-based 3D modelling of geological structures. Math Geosci 41:927–945

    Article  Google Scholar 

  • Caumon G, Gray G, Antoine C, Titeux MO (2013) Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: theory and application to a regional model of La Popa basin, NE Mexico. IEEE Trans Geosci Remote 51(3):1613–1621

    Article  Google Scholar 

  • Chiles JP, Aug C, Guillen A, Lees T (2004) Modelling the geometry of geological units and its uncertainty in 3D from structural data: the potential-field method. In: Proceedings of international symposium on orebody modelling and strategic mine planning. Perth, pp 313–320

  • Clarke SM, Burley SD, Williams GD, Richards AJ, Meredith DJ, Egan SS (2006) Integrated four-dimensional modelling of sedimentary basin architecture and hydrocarbon migration. In: Buiter SJM, Schreurs G (eds) Analogue and numerical modelling of crustal scale processes, vol 253. The Geological Society, UK, Special Publication, pp 185–211

  • Cuomo S, Galletti A, Giunta G, Starace A (2013) Surface reconstruction from scattered point via RBF interpolation on GPU. arXiv:1305.5179[cs.DC]

  • Dubrule O (1984) Comparing splines and kriging. Comput Geosci 10(2):327–338

    Article  Google Scholar 

  • Fasshauer GE (2007a) Meshfree approximation methods with Matlab. World Scientific Publishing Co., Pte. Ltd, Singapore

  • Fasshauer GE (2007b) On choosing “optimal” shape parameters for RBF approximation. Numer Algorithms 45(1–4):345–368

    Article  Google Scholar 

  • Frank T, Tertois AL, Mallet JL (2007) 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data. Comput Geosci 33(7):932–943

    Article  Google Scholar 

  • Gelfand IM, Vilenkin NY (1964) Generalized functions , vol 4: applications of harmonic analysis. Academic Press, New York

  • Gelfand AE, Smith AF (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal 6:721–741

    Article  Google Scholar 

  • Golomb M, Weinberger HF (1959) Optimal approximation and error bounds. In: Langer RE (ed) On numerical approximation. The University of Wisconsin Press, Madison

    Google Scholar 

  • Guo K, Hu S, Sun X (1993) Conditionally positive definite functions and Laplace-Stieltjes integrals. J Approx Theory 74:249–265

    Article  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • Hardy RL (1990) Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput Math Appl 19(8):163–208

    Article  Google Scholar 

  • Hillier M, de Kemp E, Schetselaar E (2013) 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations. J Struct Geol 51:167–179

    Article  Google Scholar 

  • Hjelle Ø, Petersen SA (2011) A Hamilton–Jacobi framework for modeling folds in structural geology. Math Geosci 43(7):741–761

    Article  Google Scholar 

  • Hjelle Ø, Petersen SA, Bruaset AM (2013) A numerical framework for modeling folds in structural geology. Math Geosci 45(3):255–276

    Article  Google Scholar 

  • Iske A (1995) Reconstruction of functions from generalized Hermite–Birkhoff data. In: Chui C, Schumaker L (eds) Approximation theory VIII. World Scientific Publishing, Singapore, pp 257–264

    Google Scholar 

  • Jessel M (2001) Three-dimensional geological modelling of potential-field data. Comput Geosci 27(4):455–465

    Article  Google Scholar 

  • Lajaunie C, Courrioux G, Manuel L (1997) Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation. Math Geol 29:571–584

    Article  Google Scholar 

  • Ledez D (2002) Euclidean distance mapping: geological applications. In: Terra N (Proceedings of IAMG). Proc. IAMG, Berlin, vol 4, pp 25–30

  • Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63:109–119

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comp Graph 21(4):163–169

    Article  Google Scholar 

  • Madych WR, Nelson SA (1988) Multivariate interpolation and conditionally positive definite functions. Approx Theory Appl 4(4):77–89

    Google Scholar 

  • Madych WR, Nelson SA (1990) Multivariate interpolation and conditionally positive definite functions. II. Math Comp 54(189):211–230

    Article  Google Scholar 

  • Mallet JL (1992) Discrete smooth interpolation in geometric modelling. Comput Aided Des 24(4):178–191

    Article  Google Scholar 

  • Mallet JL (1997) Discrete modelling for natural objects. Math Geol 29(2):199–219

    Article  Google Scholar 

  • Massiot C, Caumon G (2010) Accounting for axial directions, cleavages and folding style during 3D structural modeling. In: Proceedings 30th Gocad Meeting, Nancy, France

  • Matheron G (1981) Splines and kriging: their formal equivalence. In: Merriam DF (ed) Down to earth statistics: solution looking for geological problems. Syracuse University, Syracuse, pp 77–95

  • Maxelon M, Renard P, Courrioux G, Brändli M, Mancktelow N (2009) A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units. Comput Geosci 35(3):644–658

    Article  Google Scholar 

  • Micchelli CA (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr Approx 2:11–22

    Article  Google Scholar 

  • Micchelli CA, Rivlin TJ (1977) Optimal estimation in approximation theory. Plenum press, New York

    Book  Google Scholar 

  • Michalak AM (2008) A Gibbs sampler for inequality-constrained geostatistical interpolation and inverse modelling. Water Resour Res 44(9):W09437

    Article  Google Scholar 

  • Moretti I, Lepage F, Guiton M (2006) KINE3D: a new 3D restoration method based on a mixed approach linking geometry and geomechanics. Oil Gas Sci Technol 61(2):277–289

    Article  Google Scholar 

  • Muron P, Mallet JL (2003) 3D balanced unfolding: the tetrahedral approach. In: Proceedings of 23rd Gocad Meeting, Nancy, France

  • Myers DE (1992) Kriging, cokriging, radial basis functions and the role of positive definiteness. Comput Math Appl 24(12):139–148

    Article  Google Scholar 

  • Narcowich FJ, Ward JD (1994) Generalized hermite interpolation via matrix-valued conditionally positive definite functions. Math Comput 63(208):661–687

    Article  Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  • Pilkington M (2009) 3D magnetic data-space inversion with sparseness constraints. Geophysics 74(1):L7–L15

    Article  Google Scholar 

  • Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869

    Article  Google Scholar 

  • Sanders C, Bonora M, Richards D, Kozlowski E, Sylwan C, Cohen M (2004) Kinematic structural restorations and discrete fracture modeling of a thrust trap: a case study from the Tarija Basin, Argentina. Mar Petrol Geol 21:845–855

    Article  Google Scholar 

  • Sauer T (1995) Computational aspects of multivariate polynomial interpolation. Adv Comp Math 3:219–238

    Article  Google Scholar 

  • Schaback R (1999) Native Hilbert spaces for radial basis functions I. New developments in approximation theory. Birkhäuser, Basel, pp 255–282

    Chapter  Google Scholar 

  • Scheuerer M, Schaback R, Schlather M (2013) Interpolation of spatial Data—a stochastic or a deterministic problem? Eur J Appl Math 24(4):601–629

    Article  Google Scholar 

  • Sprague KB, de Kemp EA (2005) Interpretive tools for 3-D structural geological modelling part II: surface design from sparse spatial data. GeoInformatica 9(1):5–32

    Article  Google Scholar 

  • Sun X (1993) Conditionally positive definite functions and their application to multivariate interpolations. J Approx Theory 74:159–180

    Article  Google Scholar 

  • Treece GM, Prager RW, Gee AH (1999) Regularized marching tetrahedral: improved iso-surface extraction. Comput Graph 23(4):583–598

    Article  Google Scholar 

  • Turk G, O’Brien J (1999) Shape transformation using variational implicit functions. In: ACM SIGGRAPH 1999, Computer Graphics Proceedings. ACM Press, New York, pp 335–342

  • Wendland H (2005) Scattered data approximation. Cambridge University Press, New York

    Google Scholar 

  • Wolfe P (1959) The simplex method for quadratic programming. Econometrica 27(3):382–398

    Article  Google Scholar 

  • Wu Z (1992) Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx Theor Appl 8(2):1–10

    Google Scholar 

  • Zee Ma Y, La Pointe PR (eds) (2011) Uncertainty analysis and reservoir modeling. AAPG Memoir 96.

Download references

Acknowledgments

Timely guidance into CPD reproducing RBF kernels by Gregory Fasshauer is much appreciated. Many thanks to the Gocad Research Consortia for the use of software and access to research materials. We also like to thank Guillaume Caumon and one anonymous reviewer for their comments which greatly improved the manuscript. This project is funded through an industrial partnership agreement in the context of TGI4—SEDEX Purcell three-dimensional modelling project between the Earth Science Sector, Geological Survey of Canada and Mira Geosciences Limited. ESS Contribution number 20140042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Hillier.

Electronic supplementary material

Appendix: The action of linear functionals on radial functions

Appendix: The action of linear functionals on radial functions

We shall expand the generalized RBF interpolant (Eq. (5)) using linear functionals (Eq. (7)) for data \(\left\{ {\varvec{x}_i ,f( {\varvec{x}_i })} \right\} _{i=1}^\mu \),\(\left\{ {\varvec{x}_i ,\nabla f( {\varvec{x}_i })} \right\} _{i=\mu +1}^{\mu +\sigma } \), and \(\left\{ {\varvec{x}_i ,\left\langle {\nabla f( {\varvec{x}_i }),\varvec{t}_i } \right\rangle } \right\} _{i=\mu +\sigma +1}^{\mu +\sigma +\tau } \) and demonstrate the action of linear functionals on radial functions.

$$\begin{aligned} s(\varvec{x})&= \sum \limits _{j=1}^N {w_j } \lambda _j^{{\varvec{x}}^{'}} \Phi ( {\varvec{x,x}^{'}})+p({\varvec{x}}) =\sum \limits _{j=1}^\mu {a_j \delta _{{\varvec{x}}_j }^{{\varvec{x}}^{'}} } \Phi ( {\varvec{x,x}^{'}})\nonumber \\&+\sum \limits _{k=1}^\sigma {\left( \!{b_k \delta _{{\varvec{x}}_{\mu +k} }^{{\varvec{x}}^{'}} \circ \frac{\partial \Phi ( {{\varvec{x,x}}^{'}})}{\partial { x}^{'}}+c_k \delta _{{\varvec{x}}_{\mu +k} }^{{\varvec{x}}^{'}} \circ \frac{\partial \Phi ( {{\varvec{x,x}}^{'}})}{\partial y^{'}}+d_k \delta _{{\varvec{x}}_{\mu +k} }^{{\varvec{x}}^{'}} \circ \frac{\partial \Phi ( {{\varvec{x,x}}^{'}})}{\partial z^{'}}}\!\!\right) } \nonumber \\&+\sum \limits _{l=1}^\tau e_l \left\{ t_{\mu +\sigma +l,{\varvec{x}}} \delta _{{\varvec{x}}_{\mu +\sigma +l} }^{{\varvec{x}}^{'}} \circ \frac{\partial \Phi ( {{\varvec{x,x}}^{'}})}{\partial { x}^{'}}+t_{\mu +\sigma +l,y} \delta _{{\varvec{x}}_{\mu +\sigma +l} }^{{\varvec{x}}^{'}} \right. \nonumber \\&\left. \circ \frac{\partial \Phi ( {{\varvec{x,x}}^{'}})}{\partial y^{'}}+t_{\mu +\sigma +l,z} \delta _{\varvec{x}_{\mu +\sigma +l} }^{{\varvec{x}}^{'}} \circ \frac{\partial \Phi ( {{\varvec{x,x}}^{'}})}{\partial z^{'}} \right\} \nonumber \\&+\sum \limits _{s=1}^Q {g_s } p_s (\varvec{x}) =\sum \limits _{j=1}^\mu {a_j } \Phi ( {{\varvec{x,x}}_j })+\sum \limits _{k=1}^\sigma \nonumber \\&\times \left( b_k \frac{\partial \Phi ( {{\varvec{x,x}}_{\mu +k} })}{\partial x^{'}}+c_k \frac{\partial \Phi ( {{\varvec{x,x}}_{\mu +k} })}{\partial y^{'}}+d_k \frac{\partial \Phi ( {{\varvec{x,x}}_{\mu +k} })}{\partial z^{'}}\right) \nonumber \\&+\sum \limits _{l=1}^\tau e_l \left\{ t_{\mu +\sigma +l,\mathbf{x}} \frac{\partial \Phi ( {{\varvec{x,x}}_{\mu +\sigma +l} })}{\partial { x}^{'}}+t_{\mu +\sigma +l,y} \frac{\partial \Phi ( {{\varvec{x,x}}_{\mu +\sigma +l} })}{\partial y^{'}}\right. \nonumber \\&\left. +t_{\mu +\sigma +l,z} \frac{\partial \Phi ( {{\varvec{x,x}}_{\mu +\sigma +l} })}{\partial z^{'}} \right\} +\sum \limits _{s=1}^Q {g_s } p_s (\varvec{x}) =\sum \limits _{j=1}^\mu {a_j } \Phi ( {{\varvec{x,x}}_j })+\sum \limits _{k=1}^\sigma \nonumber \\&\times {\left\langle {\mathbf{b}_k ,\nabla ^{'}\Phi ( {{\varvec{x,x}}_{\mu +k} })} \right\rangle } +\sum \limits _{l=1}^\tau {e_l \left\langle {\varvec{t}_{\mu +\sigma +l} ,\nabla ^{'}\Phi ( {{\varvec{x,x}}_{\mu +\sigma +l} })} \right\rangle } +\sum \limits _{s=1}^Q {g_s } p_s (\varvec{x}). \, \nonumber \\ \end{aligned}$$
(30)

Note that the point evaluation functional \(\delta _{{\varvec{x}}_j }^{{\varvec{x}}^{'}} \)acts on the \({\varvec{x}}^{'}\)variable of the RBF \(\Phi ( {\varvec{x,x}^{'}})\) and replaces that variable with the data point \(\varvec{x}_j \).

To build the interpolation matrix (Eq. (12)), linear functionals for each constraint type are applied to the interpolant Eq. (9). For on-contact constraints \(\left\{ {\varvec{x}_i ,f( {\varvec{x}_i })} \right\} _{i=1}^\mu \)

$$\begin{aligned} \lambda _i^{\varvec{x}} s(\varvec{x})&= \delta _{{\varvec{x}}_i }^{\varvec{x}} s(\varvec{x})=\sum \limits _{j=1}^\mu {a_j } \overbrace{\Phi ( {\varvec{x}_i ,\varvec{x}_j })}^A+\sum \limits _{k=1}^\sigma \nonumber \\&\times {\left( {b_k \overbrace{\frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial x^{'}}}^B+c_k \overbrace{\frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial y^{'}}}^C+d_k \overbrace{\frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial z^{'}}}^D}\right) }\nonumber \\&+\sum \limits _{l=1}^\tau {e_l \overbrace{\left\langle {\nabla \Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +\sigma +l} }),t_{\mu +\sigma +l} } \right\rangle }^E} +\sum \limits _{s=1}^Q {g_s } \overbrace{p_s ( {\varvec{x}_i })}^G. \end{aligned}$$
(31)

For gradient constraints \(\left\{ {\varvec{x}_i ,\nabla f( {\varvec{x}_i })} \right\} _{i=\mu +1}^{\mu +\sigma } \) (x-component in this case)

$$\begin{aligned}&\lambda _i^{\varvec{x}} s(\varvec{x}) =\delta _{{\varvec{x}}_i }^{{\varvec{x}}} \circ \frac{\partial }{\partial x}s(\varvec{x}) =\sum \limits _{j=1}^\mu {a_j } \overbrace{\frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_j })}{\partial x}}^{B^T}+\sum \limits _{k=1}^\sigma \Bigg ( b_k \overbrace{\frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial x\partial x^{'}}}^{H^{xx^{'}}} \nonumber \\&\quad +c_k \overbrace{\frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial x\partial y^{'}}}^{H^{xy^{'}}}+d_k \overbrace{\frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial x\partial z^{'}}}^{H^{xz^{'}}}\Bigg ) \nonumber \\&\quad +\sum \limits _{l=1}^\tau {e_l \overbrace{\left( {\varvec{t}_{\mu +\sigma +l,x} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial x\partial x^{'}}+\varvec{t}_{\mu +\sigma +l,y} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial x\partial y^{'}}+\varvec{t}_{\mu +\sigma +l,z} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial x\partial z^{'}}}\right) }^{J^x}} \nonumber \\&\quad +\sum \limits _{s=1}^Q {g_s } \overbrace{\frac{\partial p_s ( {\varvec{x}_i })}{\partial x}}^{G^x}. \end{aligned}$$
(32)

For tangent constraints \(\left\{ {\varvec{x}_i ,\left\langle {\nabla f( {\varvec{x}_i }),\varvec{t}_i } \right\rangle } \right\} _{i=\mu +\sigma +1}^{\mu +\sigma +\tau } \)

$$\begin{aligned} \lambda _i^{\varvec{x}} s(\varvec{x})&= \Big ( {t_{ix} \delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial { x}}+t_{iy} \delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial y}+t_{iz} \delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial z}}\Big )s( \varvec{x})\nonumber \\&= \sum \limits _{j=1}^\mu {a_j } \overbrace{\left( {t_{ix} \frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_j })}{\partial x}+t_{iy} \frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_j })}{\partial y}+t_{iz} \frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_j })}{\partial z}}\right) }^{E^T} \nonumber \\&+\sum \limits _{k=1}^\sigma {\left\{ {\begin{array}{l} b_k \overbrace{\left( {t_{ix} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial x\partial x^{'}}+t_{iy} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial y\partial x^{'}}+t_{iz} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial z\partial x^{'}}}\right) }^{J^{_x^T }} \\ +c_k \overbrace{\left( {t_{ix} \frac{\partial ^2\Phi ( {x_i ,x_{\mu +k} })}{\partial x\partial y^{'}}+t_{iy} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial y\partial y^{'}}+t_{iz} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial z\partial y^{'}}}\right) }^{J^{_y^T }} \\ +d_k \overbrace{\left( {t_{ix} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial x\partial z^{'}}+t_{iy} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial y\partial z^{'}}+t_{iz} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{\mu +k} })}{\partial z\partial z^{'}}}\right) }^{J^{_z^T }} \\ \end{array}} \right\} } \nonumber \\&+\sum \limits _{l=1}^\tau {e_l \overbrace{\left\{ {\begin{array}{l} t_{ix} t_{\mu +\sigma +l,x} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial x\partial x^{'}}+t_{ix} t_{\mu +\sigma +l,y} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial x\partial y^{'}}+t_{ix} t_{\mu +\sigma +l,z} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial x\partial z^{'}} \\ +t_{iy} t_{\mu +\sigma +l,x} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial y\partial x^{'}}+t_{iy} t_{\mu +\sigma +l,y} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial y\partial y^{'}}+t_{iy} t_{\mu +\sigma +l,z} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial y\partial z^{'}} \\ +t_{iz} t_{\mu +\sigma +l,x} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial z\partial x^{'}}+t_{iz} t_{\mu +\sigma +l,y} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial z\partial y^{'}}+t_{iz} t_{\mu +\sigma +l,z} \frac{\partial ^2\Phi ( {\varvec{x}_i ,\varvec{x}_{{\mu +\sigma +l} } })}{\partial z\partial z^{'}} \\ \end{array}} \right\} }^L} \nonumber \\&+\sum \limits _{s=1}^Q {g_s } \overbrace{\left\{ {t_{ix} \frac{\partial p_s ( {\varvec{x}_i })}{\partial x}+t_{iy} \frac{\partial p_s ( {\varvec{x}_i })}{\partial y}+t_{iz} \frac{\partial p_s ( {\varvec{x}_i })}{\partial z}} \right\} }^M. \end{aligned}$$
(33)

Collecting the terms from previous equations, our interpolation matrix becomes

$$\begin{aligned} \left[ {{\begin{array}{*{20}c} A &{}\quad F &{}\quad E &{}\quad G \\ {F^\mathrm{T}} &{}\quad H &{}\quad J &{}\quad K \\ {E^\mathrm{T}} &{}\quad {J^\mathrm{T}} &{}\quad L &{}\quad M \\ {G^\mathrm{T}} &{}\quad {K^\mathrm{T}} &{}\quad {M^\mathrm{T}} &{}\quad 0 \\ \end{array} }} \right] \left[ {{\begin{array}{*{20}c} \varvec{a} \\ \varvec{f} \\ \varvec{e} \\ \varvec{g} \\ \end{array} }} \right] =\left[ {{\begin{array}{*{20}c} 0 \\ {\varvec{n}_i } \\ 0 \\ 0 \\ \end{array} }} \right] \!, \end{aligned}$$
(34)

where

$$\begin{aligned} \begin{array}{c} A_{ij} : 1\le i,j\le \mu ,\,F=\left[ {{\begin{array}{*{20}c} {B_{ij} } &{} {C_{ij} } &{} {D_{ij} } \\ \end{array} }} \right] : 1\le i\le \mu ,\,1\le j\le \sigma , \\ E_{ij} :1\le i\le \mu , \text{1 }\le j\le \tau ,\,G_{ij} :1\le i\le \mu , \text{1 }\le j\le Q,\, \\ H=\left[ {{\begin{array}{*{20}c} {H_{ij}^{xx^{'}} } &{} {H_{ij}^{xy^{'}} } &{} {H_{ij}^{xz^{'}} }\\ {H_{ij}^{yx^{'}} } &{} {H_{ij}^{yy^{'}} } &{} {H_{ij}^{yz^{'}} }\\ {H_{ij}^{zx^{'}} } &{} {H_{ij}^{zy^{'}} } &{} {H_{ij}^{zz^{'}} }\\ \end{array} }} \right] :1\le i,j\le \sigma ,J=\left[ {{\begin{array}{*{20}c} {J_{ij}^x } \\ {J_{ij}^y } \\ {J_{ij}^z } \\ \end{array} }} \right] :1\le i\le \sigma ,\,1\le j\le \tau \\ K=\left[ {{\begin{array}{*{20}c} {G_{ij}^x } \\ {G_{ij}^y } \\ {G_{ij}^z } \\ \end{array} }} \right] :1\le i\le \sigma ,\,1\le j\le Q,L_{ij} :1\le i,j\le \tau \\ M_{ij} :1\le i\le \tau ,\,1\le j\le Q,f=\left[ {{\begin{array}{*{20}c} \varvec{b} \\ \varvec{c} \\ \varvec{d} \\ \end{array} }} \right] ,\varvec{n}_i =\left[ {{\begin{array}{*{20}c} {n_{ix} } \\ {n_{iy} } \\ {n_{iz} } \\ \end{array} }} \right] :1\le i\le \sigma . \, \\ \end{array}. \end{aligned}$$
(35)

Most matrix elements are defined in Eqs. (31), (32), and (33). Remaining elements are defined by applying the linear functionals \(\delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial y}\) and \(\delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial z}\) to the interpolant \(s(\varvec{x})\).

Some examples of partial derivatives of the cubic RBF

$$\begin{aligned} \Phi ( {\varvec{x,x}^{\prime }})=r^3=( {( {x-x^{\prime }})^2+( {y-y^{\prime }})^2+( {z-z^{\prime }})^2})^{3/2}, \end{aligned}$$
(36)

with input data

$$\begin{aligned} \Phi ( {\varvec{x}_i ,\varvec{x}_j })=r_{ij}^3 =( {( {x_i -x_j })^2+( {y_i -y_j })^2+( {z_i -z_j })^2})^{3/2}. \end{aligned}$$
(37)

Examples of first derivative are

$$\begin{aligned} \begin{aligned} ( {\delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial x}})( {\delta _{\varvec{x}_j }^{\varvec{x}^{\prime }} })\Phi ( {\varvec{x,x}^{\prime }})&= \frac{\partial \Phi ( {\varvec{x}_i ,\varvec{x}_j })}{\partial x}=3( {x_i -x_j })r_{ij}\\ ( {\delta _{{\varvec{x}}_i }^{\varvec{x}} })( {\delta _{\varvec{x}_j }^{\varvec{x}^{\prime }} \circ \frac{\partial }{\partial x^{'}}})\Phi ( {\varvec{x,x}^{\prime }})&= \frac{\partial \Phi ( {x_i ,x_j })}{\partial x^{\prime }}=-3( {x_i -x_j })r_{ij}. \end{aligned} \end{aligned}$$
(38)

Examples of second derivatives are

$$\begin{aligned} \begin{aligned} ( {\delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial x}})( {\delta _{\varvec{x}_j }^{\varvec{x}^{'}} \circ \frac{\partial }{\partial x^{'}}})\Phi ( {\varvec{x,x}^{'}})&= \frac{\partial \Phi ( {x_i ,x_j })}{\partial x\partial x^{'}}=-3( {r_{ij} +\frac{( {x_i -x_j })^2}{r_{ij} }}) \qquad \\ ( {\delta _{{\varvec{x}}_i }^{\varvec{x}} \circ \frac{\partial }{\partial x}})( {\delta _{\varvec{x}_j }^{\varvec{x}^{'}} \circ \frac{\partial }{\partial y^{'}}})\Phi ( {\varvec{x,x}^{'}})&= \frac{\partial \Phi ( {x_i ,x_j })}{\partial x\partial y^{'}}=-3\frac{( {x_i -x_j })( {y_i -y_j })}{r_{ij} }.\qquad \end{aligned}\qquad \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillier, M.J., Schetselaar, E.M., de Kemp, E.A. et al. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Math Geosci 46, 931–953 (2014). https://doi.org/10.1007/s11004-014-9540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-014-9540-3

Keywords

Navigation