Skip to main content
Log in

Evaluation of the Stress-Strain State at the Crack Tip in Casing Pipes Based on Numerical Simulation

  • Published:
Materials Science Aims and scope

The distribution of local stresses and strains in a specimen in the vicinity of the crack tip in 50G and 32G2 casing pipe steels with different microstructure is obtained by simulating the stress-strain state at the crack tip and using numerical calculations. Steels are distinguished by atypical mechanical behavior: lower-strength 50G steel with a coarse-grained ferrite-pearlite structure is characterized by lower resistance to brittle fracture compared to 32G2 steel with a fine-grained bainite structure. The finite element method is used to simulate the specimen with a crack, and for calculations the true stress-strain curves of the steels are used. The calculation results confirm a higher susceptibility of the coarsegrained steel to crack propagation by brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. J. Davies, S. Almond, R. S. Ward, R. B. Jackson, C. Adams, F. Worrall, L. G. Herringshaw, J. G. Gluyas, and M. A. Whitehead, “Oil and gas wells and their integrity: implications for shale and unconventional resource exploitation,” Mar. Pet. Geol., 56, 239–254 (2014); DOI: https://doi.org/10.1016/j.marpetgeo.2014.07.014.

    Article  Google Scholar 

  2. A. I. Mohammed, B. Oyeneyin, B. Atchison, and J. Njuguna, “Casing structural integrity and failure modes in a range of well types: a review,” J. Nat. Gas Sci. Eng., 68, Article number: 102898 (2019); DOI: https://doi.org/10.1016/j.jngse.2019.05.011.

  3. M. S. Khoma, V. A. Vynar, B. M. Datsko, V. R. Ivashkiv, M. R. Chuchman, Yu. Ya. Maksishko, and R. L. Bukliv, “Corrosion and mechanical fracture of steels for casing pipes under the influence of elevated temperatures and pressure of carbon dioxide,” Mater. Sci., 57, No. 1, 194–100 (2021); DOI: https://doi.org/10.1007/s11003-021-00519-0.

    Article  CAS  Google Scholar 

  4. O. I. Zvirko, O. T. Tsyrulnyk, I. Dzioba, N. V. Kret, and S. Lipiec, “Influence of the structural features of steels of casing pipes on their mechanical properties and hydrogen brittleness,” Mater. Sci., 56, No. 6, 48–754 (2021); DOI: https://doi.org/10.1007/s11003-021-00491-9.

    Article  CAS  Google Scholar 

  5. O. Zvirko, O. Tsyrulnyk, S. Lipiec, and I. Dzioba, “Evaluation of corrosion, mechanical properties and hydrogen embrittlement of casing pipe steels with different microstructure,” Materials, 14, Is. 24, Article number: 7860 (2021); DOI: https://doi.org/10.3390/ma14247860.

  6. D. A. López., T. Pérez., and S. N. Simison, “The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of the-art appraisal,” Mater. Des., 24, Is. 8, 561–575 (2003); DOI: https://doi.org/10.1016/S0261-3069(03)00158-4.

  7. T. Xu, Y. Feng, S. Song, and Z. Jin, “Evaluation of mechanical properties and microstructures of casing-drilling steels,” Adv. Mater. Res., 146–147, 674–677 (2011); DOI: https://doi.org/10.4028/www.scientific.net/AMR.146-147.674.

    Article  CAS  Google Scholar 

  8. T. Xu, Z. Jin, Y. Feng, S. Song, and D. Wang, “Study on the static and dynamic fracture mechanism of different casing-drilling steel grades,” Mater. Charact., 67, 1–9 (2012); DOI: https://doi.org/10.1016/j.matchar.2012.02.016.

    Article  CAS  Google Scholar 

  9. R. Wang, and S. Luo, “Grooving corrosion of electric-resistance-welded oil well casing of J55 steel,” Corr. Sci., 68, 119–127 (2013); DOI: https://doi.org/10.1016/j.corsci.2012.11.002.

    Article  CAS  Google Scholar 

  10. B. Li, M. Luo, Z. Yang, F. Yang, H. Liu, H. Tang, Z. Zhang, and J. Zhang, “Microstructure evolution of the semi-macro segregation induced banded structure in high strength oil tubes during quenching and tempering treatments,” Materials, 12, Is. 20, 1–3 (2019); DOI: https://doi.org/10.3390/ma12203310.

    Article  CAS  Google Scholar 

  11. Q. Zhang, Q. Yuan, Z. Xiong, M. Liu, and G. Xu, “Effects of Q&T parameters on phase transformation, microstructure, precipitation and mechanical properties in an oil casing steel,” Phys. Met. Metallogr., 122, Is. 14, 1463–1472 (2021); DOI: https://doi.org/10.1134/S0031918X21140180.

  12. E. W. J. Van Hunnik, B. F. M. Pots, and E. L. J. A. Hendriksen, “The formation of protective FeCO3 corrosion product layers in CO2 corrosion,” in: Proc. of the Int. Conf. Corrosion-96, NACE Int., 1996-March, Denver, Colorado, USA (1996).

  13. E. I. Kryzhanivskyi, H. M. Nykyforchyn, O. Z. Student, H. V. Krechkovska, and I. I. Chudyk, “Role of nonmetallic inclusions in premature stress-corrosion fractures of drill pipes,” Mater. Sci., 55, No. 6, 822–830 (2020); DOI: https://doi.org/10.1007/s11003-020-00375-4.

    Article  Google Scholar 

  14. I. Dzioba, O. Zvirko, and S. Lipiec, “Assessment of operational degradation of pipeline steel based on true stress–strain diagrams,” Lecture Notes in Civil Engineering, 102, 175–187 (2021); DOI: https://doi.org/10.1007/978-3-030-58073-5_14.

    Article  Google Scholar 

  15. Y. Bao, and T. Wierzbicki, “On fracture locus in the equivalent strain and stress triaxiality space,” Int. J. Mech. Sci., 46, Is. 1, 81–98 (2004); DOI: https://doi.org/10.1016/j.ijmecsci.2004.02.006.

  16. Y. Bao, and T. Wierzbicki, “A new model of metal plasticity and fracture with pressure and lode dependence,” Int. J. Plast., 24, Is. 6, 1071–1096 (2008); DOI: https://doi.org/10.1016/j.ijplas.2007.09.004.

  17. A. Neimitz, J. Gałkiewicz, S. Lipiec, and I. Dzioba, “Estimation of the onset of crack growth in ductile materials,” Materials, 11, Is. 10, 1–19 (2018); DOI: https://doi.org/10.3390/ma11102026.

    Article  CAS  Google Scholar 

  18. Z. T. Nazarchuk, and H. M. Nykyforchyn, “Structural and corrosion fracture mechanics as components of the physicochemical mechanics of materials,” Mater. Sci., 54, No. 1, 7–21 (2018); DOI: https://doi.org/10.1007/s11003-018-0151-x.

    Article  Google Scholar 

  19. R. O. Ritchie., J. F. Knott., and J. R. Rice, “On the relationship between critical tensile stress and fracture toughness in mild steel,” J. Mech. Phys. Solids, 21, Is. 6, 395–410 (1973); DOI: https://doi.org/10.1016/0022-5096(73)90008-2.

  20. A. Neimitz., M. Graba., and J. Gałkiewicz, “An alternative formulation of the Ritchie-Knott-Rice local fracture criterion,” Eng. Fract. Mech., 74, Is. 8, 1308–1322 (2007); DOI: https://doi.org/10.1016/j.engfracmech.2006.07.015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Zvirko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 58, No. 4, pp. 32–36, July–August, 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvirko, O.I., Lipec, S., Vengreniuk, O.I. et al. Evaluation of the Stress-Strain State at the Crack Tip in Casing Pipes Based on Numerical Simulation. Mater Sci 58, 460–465 (2023). https://doi.org/10.1007/s11003-023-00685-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-023-00685-3

Keywords

Navigation