Skip to main content
Log in

Structural and Corrosion Fracture Mechanics as Components of the Physicochemical Mechanics of Materials

  • Published:
Materials Science Aims and scope

On the occasion of the centenary of the Ukrainian National Academy of Sciences and 90th birthday of O. M. Romaniv, prominent Ukrainian scientist and active organizer of science and public figure, we analyze his contribution to the physicochemical mechanics of materials based on the structural fracture mechanics and mechanics of corrosion fracture of metals developed by Romaniv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. O. M. Romaniv, Yu. V. Zyma, and H. V. Karpenko, Electronic Fractography of Hardened Steels [in Ukrainian], Naukova Dumka, Kyiv (1974).

    Google Scholar 

  2. O. N. Romaniv, Fracture Toughness of Structural Steels [in Russian], Metallutgiya, Moscow (1979).

    Google Scholar 

  3. O. N. Romaniv and G. N. Nikiforchin, Mechanics of Corrosion Fracture of Structural Alloys [in Russian], Metallutgiya, Moscow (1986).

    Google Scholar 

  4. V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials: A Handbook [in Russian], Vol. 4: O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, N. A. Makhutov, and M. M. Stadnik, Fatigue and Cyclic Crack-Growth Resistance of Structural Materials, Naukova Dumka, Kiev (1990).

  5. O. N. Romaniv, “Structural fracture mechanics—a new and promising direction in the problem of fracture of metals,” Fiz.-Khim. Mekh. Mater., 17, No. 4, 28–45 (1981); English translation: Soviet Mater. Sci., 17, No. 4, 314–328 (1982).

  6. O. M. Romaniv, “Structural fracture mechanics and control of the properties of structural alloys,” Fiz.-Khim. Mekh. Mater., 41, No. 4, 99–106 (2005); English translation: Mater. Sci., 41, No. 4, 538–546 (2005).

  7. O. N. Romaniv, A. N. Tkach, and V. N. Simin'kovich, “Structure and near-threshold fatigue of steels,” Fiz.-Khim. Mekh. Mater., 19, No. 4, 19–33 (1983); English translation: Soviet Mater. Sci., 19, No. 4, 272–285 (1984).

  8. O. N. Romaniv, G. N. Nikiforchin, and A. V. Vol'demarov, “Cyclic-corrosion crack resistance: Rules of the formation of thresholds and life capabilities of various structural alloys,” Fiz.-Khim. Mekh. Mater., 21, No. 3, 7–20 (1985); English translation: Soviet Mater. Sci., 21, No. 3, 195–207 (1985).

  9. O. N. Romaniv, G. N. Nikiforchin, and A. Z. Student, “Threshold of corrosion-static crack resistance as a characteristic of the competitive capacity of different constructional alloys,” Fiz.-Khim. Mekh. Mater., 21, No. 2, 20–32 (1985); English translation: Soviet Mater. Sci., 21, No. 2, 118–129 (1985).

  10. O. N. Romaniv, A. N. Tkach, and A. V. Vol'demarov, “Method of complex improvement of the mechanical properties of lowtempered structural steels,” Fiz.-Khim. Mekh. Mater., 15, No. 4, 71–77 (1979); English translation: Soviet Mater. Sci., 15, No. 4, 373–378 (1980).

  11. O. M. Romaniv and B. D. Vasyliv, “Some features of formation of the structural strength of ceramic materials,” Fiz.-Khim. Mekh. Mater., 34, No. 2, 7–17 (1998); English translation: Mater. Sci., 34, No. 2, 149–161 (1998).

  12. W. Elber, “Fatigue crack closure under cyclic tension,” Eng. Fract. Mech., 2, No. 1, 37–45 (1970).

    Article  Google Scholar 

  13. G. N. Nikiforchin, B. N. Andrusiv, A. V. Vol'demarov, and M. A. Kutsyn, “Assessment of the effect of fatigue crack closure,” Fiz.-Khim. Mekh. Mater., 18, No. 5, 100–103 (1982).

    Google Scholar 

  14. O. N. Romaniv, G. N. Nikiforchin, and B. N. Andrusiv, “Effect of crack closure and evaluation of the cyclic crack resistance of constructional alloys,” Fiz.-Khim. Mekh. Mater., 19, No. 3, 47–61 (1983); English translation: Soviet Mater. Sci., 19, No. 3, 212–225 (1983).

  15. G. N. Nikiforchin, B. N. Andrusiv, and L. Yu. Kozak, “Influence of specimen geometry on the near-threshold growth of fatigue cracks in ductile steel,” Fiz.-Khim. Mekh. Mater., 19, No. 4, 123–124 (1983).

    Google Scholar 

  16. G. N. Nikiforchin, A. A. Popov, B. N. Andrusiv, and Yu. V. Zima, “Influence of the scale factor on the cyclic crack resistance of plastic steels in the low-amplitude area of loading,” Fiz.-Khim. Mekh. Mater., 21, No. 4, 57–64 (1985); English translation: Soviet Mater. Sci., 21, No. 4, 347–353 (1986).

  17. J. K. Musuva and J. C. Radon, “Fatigue crack growth at low stress intensities,” in: Materials Expertise and Design in Fatigue: Proc. Int. Conf. Fatigue, Warwick (1981), pp. 106–116.

  18. V. T. Troshchenko, V. V. Pokrovskii, V. G. Kaplunenko, P. V. Yasnii, G. P. Karzov, B. T. Timofeev, and V. P. Leonov, “Influence of specimen size on the crack resistance of hull heat-resistant steels,” Probl. Prochn., No. 10, 3–11 (1982).

  19. O. N. Romaniv, A. N. Tkach, and Yu. N. Lenets, “Possible disturbance of invariance of fatigue failure curves caused by the phenomenon of crack closure,” Fiz.-Khim. Mekh. Mater., 20, No. 6, 62–70 (1984); English translation: Soviet Mater. Sci., 20, No. 6, 562–569 (1985).

  20. O. N. Romaniv, G. N. Nikiforchin, and B. N. Andrusiv, “Influence of fatigue crack closure and geometry on the structural sensitivity of the near-threshold fatigue of steels,” Fiz.-Khim. Mekh. Mater., 20, No. 1, 71–77 (1984); English translation: Soviet Mater. Sci., 20, No. 1, 62–67 (1984).

  21. O. N. Romaniv, “A structural concept of the fatigue limit of structural alloys,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 106–115 (1986); English translation: Soviet Mater. Sci., 22, No. 1, 103–112 (1986).

  22. A. N. Tkach, N. M. Fonshtein, V. N. Simin’kovich, A. N. Bortsov, and Yu. N. Lenets, “Fatigue crack growth in a dual-phase ferritic-martensitic steel,” Fiz.-Khim. Mekh. Mater., 20, No. 5, 45–51 (1984); English translation: Soviet Mater. Sci., 20, No. 5, 448–453 (1985).

  23. O. N. Romaniv, G. N. Nikiforchin, and N. A. Deev, “Kinetic effects in the mechanics of delayed fracture of high-strength alloys,” Fiz.-Khim. Mekh. Mater., 12, No. 4, 9–24 (1976); English translation: Soviet Mater. Sci., 12, No. 4, 347–360 (1977).

  24. V. V. Panasyuk, Mechanics of Quasibrittle Fracture of Materials [in Russian], Naukova Dumka, Kiev (1991.

    Google Scholar 

  25. O. N. Romaniv, G. N. Nikiforchin, A. Z. Student, and A. T. Tsirul’nik, “Two features in rating the corrosion crack resistance of constructional alloys,” Fiz.-Khim. Mekh. Mater., 18, No. 1, 35–43 (1982); English translation: Soviet Mater. Sci., 18, No. 1, 30–40 (1982).

  26. O. N. Romaniv and G. N. Nikiforchin, “An investigation of the J-integral method for rating the crack resistance of constructional materials (a review),” Fiz.-Khim. Mekh. Mater., 14, No. 3, 80–95 (1978); English translation: Soviet Mater. Sci., 14, No. 3, 296–308 (1978).

  27. G. N. Nikiforchin, V. V. Kalmykov, and A. Z. Student, “Rating the crack resistance of structural steels,” Fiz.-Khim. Mekh. Mater., 14, No. 2, 34–38 (1978); English translation: Soviet Mater. Sci., 14, No. 2, 139–143 (1978).

  28. T. R. Agladze, Ya. M. Kolotyrkin, O. N. Romaniv, and G. N. Nikiforchin, “The effect of adsorption-chemical interaction for metalenvironment system in stress corrosion cracking,” in: Proc. 4th Japan-USSR Corrosion Sem., Japan Soc. Corr. Eng., Tokyo (1985), pp. 256–269.

  29. O. N. Romaniv, G. N. Nikiforchin, and L. Yu. Kozak, “Cyclic crack resistance of constructional steels in gaseous hydrogen,” Fiz. Khim. Mekh. Mater., 22, No. 5, 3–15 (1986); English translation: Soviet Mater. Sci., 22, No. 5, 439–450 (1987).

  30. Z. T. Nazarchuk (editor), Technical Diagnostics of Materials and Structures: A Handbook [in Ukrainian], Vol. 1: E. I. Kryzhanivs’kyi, O. P. Ostash, H. M. Nykyforchyn, O. Z. Student, and P. V. Yasnii, In-Service Degradation of Structural Materials, Prostir-M, Lviv (2016).

  31. V. Panasyuk and H. Nykyforchyn, “Properties degradation of pipeline steels caused by long-term service in hydrogen enriched environments,” in: 19th Europ. Conf. Fracture-2012 (ECF-19) (Kazan, Russia, August 26–31, 2012), Vol. 1, Curran Associates, Inc. (2016), pp. 1–11.

  32. O. Z. Student, “Accelerated method for hydrogen degradation of structural steel,” Fiz.-Khim. Mekh. Mater., 34, No. 4, 45–52 (1998); English translation: Mater. Sci., 34, No. 4, 497–507 (1998).

  33. O. T. Tsyrul’nyk, N. V. Kret, V. A. Voloshyn, and О. І. Zvirko, “A method for the laboratory degradation of structural steels,” Fiz.-Khim. Mekh. Mater., 53, No. 5, 85–93 (2017).

    Google Scholar 

  34. Z. T. Nazarchuk (editor), Technical Diagnostics of Materials and Structures: A Handbook [in Ukrainian], Vol. 6: V. I. Pokhmurs’kyi, I. M. Dmytrakh, M. S. Khoma, O. T. Tsyrul’nyk, M. D. Sakhnenko, and Yu. S. Herasymenko, Electrochemical Methods of Monitoring of the Degradation of Structural Materials, Prostir-M, Lviv (2017).

  35. О. І. Zvirko, “Electrochemical methods for the evaluation of the degradation of structural steels intended for long-term operation,” Fiz.-Khim. Mekh. Mater., 52, No. 4, 126–131 (2016); English translation: Mater. Sci., 52, No. 4, 588–594 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Nykyforchyn.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 54, No. 1, pp. 17–30, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarchuk, Z.Т., Nykyforchyn, H.M. Structural and Corrosion Fracture Mechanics as Components of the Physicochemical Mechanics of Materials. Mater Sci 54, 7–21 (2018). https://doi.org/10.1007/s11003-018-0151-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-018-0151-x

Keywords

Navigation