Skip to main content
Log in

Development of Investigations in the Field of Corrosion and Stress-Corrosion Fracture of Metals and the Methods of Their Protection (A Survey)

  • Published:
Materials Science Aims and scope

We present a brief survey of the main investigations of different aspects of the problems of corrosion and stress corrosion fracture of metals carried out, first of all, at the Karpenko Physicomechanical Institute of the Ukrainian National Academy of Sciences. In particular, we describe the main regularities and mechanisms of corrosion cracking, corrosion fatigue, and fretting-corrosion of metals depending on their structure and conditions of interaction with corrosive media. We also present the results of testing of the inhibitor protection of metals and the development of metallic and nonmetallic protective coatings, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. G. V. Karpenko, Influence of Active Liquid Media on the Durability of Steel [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1955).

  2. H. V. Karpenko, Corrosion Fatigue of Steel [in Ukrainian], Vyd. Akad. Nauk Ukr. RSR, Kyiv (1959).

  3. G. V. Karpenko, Strength of Steel in Corrosive Media [in Russian], Mashgiz, Moscow (1963).

    Google Scholar 

  4. G. V. Karpenko, Influence of Medium on the Strength and Durability of Metals [in Russian], Naukova Dumka, Kiev (1976).

  5. G. V. Karpenko, “The adsorption-electrochemical hypothesis of stress corrosion,” Fiz.-Khim. Mekh. Mater., 8, No. 6, 34–38 (1972); English translation: Sov. Mater. Sci., 8, No. 6, 676–679 (1972).

  6. G. V. Karpenko and I. I. Vasilenko, Corrosion Cracking of Steels [in Russian], Tekhnika, Kiev (1971).

  7. O. N. Romaniv and G. N. Nikiforchin, Mechanics of Corrosion Fracture of Structural Alloys [in Russian], Metallurgiya, Moscow (1986).

  8. I. I. Vasilenko and R. K. Melekhov, Corrosion Cracking of Steels [in Russian], Naukova Dumka, Kiev (1977).

  9. G. V. Karpenko, I. I. Vasilenko, R. K. Melekhov, O. N. Chaplya, and B. T. Dyadchenko, “Cracking of carbon steels in alkaline solutions,” Dokl. Akad. Nauk SSSR, 202, No. 3, 649–651 (1972).

    Google Scholar 

  10. R. K. Melekhov, Corrosion Cracking of Titanium and Aluminum Alloys [in Russian], Tekhnika, Kiev (1979).

  11. R. K. Melekhov (editor), Corrosion-Resistant Steels and Alloys for the Equipment and Pipelines of Nuclear Power Plants [in Russian], Naukova Dumka, Kiev (1983).

  12. R. K. Melekhov, I. I. Vasilenko, A. M. Krutsan, and M. V. Chervonyi, “Electrochemical conditions for crack origin in low- and medium-strength steels and titanium and aluminum alloys,” Fiz.-Khim. Mekh. Mater., 23, No. 3, 3–13 (1987); English translation: Sov. Mater. Sci., 23, No. 3, 231–240 (1987).)

  13. V. I. Pokhmurs’kyi, R. K. Melekhov, H. M. Krutsan, and V. H. Zdanovs’kyi, Stress Corrosion Fracture of Welded Structures [in Ukrainian], Naukova Dumka, Kyiv (1995).

  14. A. V. Vainman, R. K. Melekhov, and O. D. Smiyan, Hydrogen Embrittlement of the Elements of High-Pressure Boilers [in Russian], Naukova Dumka, Kiev (1990).

  15. H. M. Krutsan and R. K. Melekhov, “Corrosion damage to power-generating plants,” Novyny Enerh., No. 7, 15–25 (1998).

  16. V. I. Pokhmurskii, I. P. Gnyp, I. N. Antoshchak, O. S. Kalakhan, I. Z. Dutsyak, É. I. Lychkovskii, and E. I. Mamaeva, “Installation for the investigation of the electrochemical properties of metal surfaces in corrosive media at high temperatures and under high pressures,” Zashch. Met., No. 1, 516–518 (1991).

  17. V. I. Pokhmurskii, I. P. Gnyp, and I. N. Antoshchak, “Electrochemical properties of the steels of nuclear power plants in reactor water at 90–300°С,” Zashch. Met., No. 3, 271–275 (1994).

  18. V. I. Pokhmurs’kyi and I. M. Antoshchak, Methods for the Electrochemical Investigation of Metals in High-Temperature Aqueous Media [in Ukrainian], Spolom, Lviv (2010).

    Google Scholar 

  19. V. I. Pokhmurs’kyi, I. P. Gnyp, and É. I. Lychkovs’kyi, “Pollution of the heat carrier and its influence on the service life of powergenerating units of nuclear power plants,” Fiz.-Khim. Mekh. Mater., 36, No. 5, 19–30 (2000); English translation: Mater. Sci., 36, No. 5, 653–668 (2000).

  20. R. K. Melekhov and V. I. Pokhmurs’kyi, Structural Materials of Power-Generating Equipment [in Ukrainian], Naukova Dumka, Kyiv (2003).

  21. S. I. Hirnyi, “Anodic hydrogenation of iron in a carbonate-bicarbonate solution,” Fiz.-Khim. Mekh. Mater., 37, No. 3, 103–110 (2001); English translation: Mater. Sci., 37, No. 3, 491–498 (2001).

  22. S. I. Hirnyi, “Electric absorption of hydrogen by iron anodically polarized in a carbonate-bicarbonate solution,” Visn. Franko Lviv Univ., Ser. Khim., Issue 40, 276–279 (2001).

  23. R. K. Melekhov, K. Tubilevych, and S. I. Hirnyi, “Problem of hydrogen-sulfide and carbonate cracking of main pipelines,” Novi Mater. Tekhnol. Metall. Machine Build., No. 1, 37–45 (2001).

  24. H. Krutsan, V. Shevtsov, O. Radkevych, L. Puzrin, M. Chuchman, and M. Poleshchuk, “Choice of steel for the body parts of production trees operating in hydrogen-sulfide media,” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Strength of Structures [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2009), pp. 953–958.

  25. V. I. Pokhmurs’kyi and M. S. Khoma, Corrosion Fatigue of Metals and Alloys [in Ukrainian], Spolom, Lviv (2008).

  26. V. T. Stepurenko, Investigation of the Corrosion Resistance and Stress Corrosion Strength of 45 Steel in Natural Hydrogen-Sulfide Water of the Rozdol Sulfur Deposit and Other Media [in Russian], Izd. Inst. Mashinoved. Avtomat., Lviv (1958).

  27. V. I. Pokhmurs’kyi and A. M. Krokhmal’nyi, “Electrochemical aspects of the corrosion fatigue of metals,” in: Proc. of the First Soviet-English Seminar “Corrosion Fatigue of Metals” [in Russian], Naukova Dumka, Kiev (1982), pp. 101–120.

  28. G. V. Karpenko, R. G. Pogoretskii, and V. I. Pokhmurskii, A Machine for Fatigue Tests [in Russian], Author's Certificate No. 356512 (USSR), Publ. on 28.07.72, Bull. No. 32.

  29. V. I. Pokhmurskii, Corrosion-Fatigue Strength of Steels and Methods for Its Enhancement [in Russian], Naukova Dumka, Kiev (1974).

  30. V. I. Pokhmurskii, Corrosion Fatigue of Metals [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  31. H. V. Karpenko and A. I. Yatsyuk, Influence of the Surface Treatment on the Fatigue Strength of Steel in Active Liquid Media [in Ukrainian], Vyd. Akad. Nauk Ukr. RSR, Kyiv (1957).

  32. G. V. Karpenko, K. B. Katsov, I. V. Kokotailo, and V. P. Rudenko, Low-Cycle Fatigue of Steel in Working Media [in Russian], Naukova Dumka, Kiev (1977).

  33. G. V. Karpenko, I. E. Zamostyanik, Yu. I. Babei, and V. I. Pokhmurskii, “Determination of stresses in metal microvolumes by electrode potential measurements,” Fiz.-Khim. Mekh. Mater., 5, No. 5, 635–636 (1969); English translation: Sov. Mater. Sci., 5, No. 5, 529–530 (1969).

  34. G. V. Karpenko, I. E. Zamostyanik, Yu. I. Babei, and V. I. Pokhmurskii, A Method of the Determination of Mechanical Stresses [in Russian], Author's Certificate No. 356512 (USSR), Publ. on 01.07.71, Bull. No. 21.

  35. V. I. Pokhmurskii, “General aspects of the corrosion fatigue of metals and alloys,” in: Proc. of the First Soviet-English Sem. “Corrosion Fatigue of Metals” [in Russian], Naukova Dumka, Kiev (1982), pp. 86–101.

  36. V. I. Pokhmurskii, M. S. Khoma, I. N. Antoshchak, and I. Ya. Lapka, “On the influence of cyclic stresses on the selective dissolution of alloys,” Zashch. Met., No. 3, 246–251 (1996).

  37. V. I. Pokhmurskii, M. S. Khoma, and A. V. Zaluzhets’, A Method for the Determination of Corrosion-Fatigue Limit of Corrosion-Resistant Steels [in Ukrainian], Patent No. 50573А (Ukraine), Publ. on 15.10.2002, Bull. No. 10.

  38. V. V. Panasyuk, L. V. Ratych, and I. N. Dmytrakh, “A method for the determination of the electrochemical state at the crack tip in testing structural materials for crack resistance in corrosive media,” Zavod. Lab., 50, No. 7, 56–59 (1984).

    Google Scholar 

  39. V. V. Panasyuk, L. V. Ratych, and I. M. Dmytrakh, “Relationship of fatigue-crack growth rate in an aqueous corrosive medium to the electrochemical conditions at the crack tip,” Fiz.-Khim. Mekh. Mater., 19, No. 4, 33–37 (1983); English translation: Sov. Mater. Sci., 19, No. 4, 286–289 (1983).

  40. H. M. Nykyforchyn, O. T. Tsyrul’nyk, and M. I. Hredil’, “Sensitivity of mechanical, stress-corrosion, and electrochemical properties to the in-service degradation of steels of the main pipelines,” in: Problems of the Lifetime and Safety of Operation of Structures, Buildings, and Machines [in Ukrainian], Inst. Electric Weld., Kyiv (2009), pp. 29–32.

  41. V. V. Panasyuk and O. N. Romaniv, “Mechanics of corrosion-fatigue fracture,” in: Corrosion Fatigue of Metals [in Russian], Naukova Dumka, Kiev (1982), pp. 39–66

  42. O. M. Romaniv, “Mechanics of corrosion fracture: first achievements and prospects,” Visn. Akad. Nauk Ukr. RSR, No. 2, 29–41 (1981).

  43. V. V. Panasyuk and I. N. Dmytrakh, “Brittle fracture mechanics of materials in corrosive environments,” in: Vortage zur 17. Metalltagung “Umgebungsabhangiges Bruchvеrhalten” (Dresden, Oct. 29–31, 1990), lnformationsgesellschaftvеrlag, Dresden (1991), pp. 43–70.

  44. Z. T. Nazarchuk (editor), Technical Diagnostics of Materials and Structures: A Handbook [in Ukrainian], Vol. 6: V. I. Pokhmurs’kyi, I. M. Dmytrakh, M. S. Khoma, O. T. Tsyrul’nyk, I. M. Zin’, M. D. Sakhnenko, and Yu. S. Herasymenko, Electrochemical Methods Aimed at Monitoring of the Degradation of Structural Materials, Prostir–M, Lviv (2017).

  45. V. I. Pokhmur’skyi, V. I. Kopylets’, and E. P. Koval’chuk, “Influence of deformation of the crystalline lattice of copper on the adsorption of atomic hydrogen,” Fiz.-Khim. Mekh. Mater., 20, No. 3, 39–41 (1984); English translation: Sov. Mater. Sci., 20, No. 3, 237–239 (1984).

  46. V. I. Pokhmur’skyi and V. I. Kopylets’, “Computer simulation of chemisorption on strained metals,” Fiz.-Khim. Mekh. Mater., 29, No. 6, 7–15 (1993) ; English translation: Mater. Sci., 29, No. 6, 559–568 (1993).

  47. V. I. Pokhmur’skyi, V. I. Kopylets’, O. I. Balyts’kyi, and S. A. Kornii, “Investigation of the effect of deformation of metals on their interaction with media on the atomic level,” Fiz.-Khim. Mekh. Mater., 32, No. 3, 16–19 (1996); English translation: Mater. Sci., 32, No. 3, 267–271 (1996).

  48. V. I. Pokhmur’skyi, V. I. Kopylets’, and S. A. Kornii, “Quantum-chemical simulation of selective dissolution of brass and zincaluminum alloy,” Fiz.-Khim. Mekh. Mater., 34, No. 2, 29–33 (1998); English translation: Mater. Sci., 34, No. 2, 174–179 (1998).

  49. V. I. Pokhmur’skyi, S. A. Kornii, and V. I. Kopylets’, “Modeling of the interaction of an aqueous electrolyte with metals: molecular-dynamic approach,” Fiz.-Khim. Mekh. Mater., 40, No. 5, 7–12 (2004); English translation: Mater. Sci., 40, No. 5, 579–584 (2004).

  50. É. M. Gutman, A. K. Mindyuk, and G. V. Karpenko, “Efficiency of some stress-corrosion inhibitors,” Fiz.-Khim. Mekh. Mater., 1, No. 5, 535–538 (1965); English translation: Soviet Mater. Sci., 1, No. 5, 371–373 (1965).

  51. A. K. Mindyuk, É. M. Gutman, and G. V. Karpenko, “The role of organic additives in inhibiting corrosion and hydrogen-charging of steel in sulfuric acid,” Fiz.-Khim. Mekh. Mater., 2, No. 4, 441–449 (1966); English translation: Sov. Mater. Sci., 2, No. 4, 316–322 (1966).

  52. Z. V. Slobodyan, R. B. Kupovych and L. A. Mahlatyuk, “Influence of tannin extracts on the corrosion resistance of 20 steel in tap water and in 5% HCl,” Fiz.-Khim. Mekh. Mater., 45, No. 4, 120–121 (2009); English translation: Mater. Sci., 45, No. 4, 609–611 (2009).

  53. V. I. Pokhmur’skyi, I. M. Zin’, L. M. Bilyi, M. B. Ratushna, and I. P. Gnyp, “Complex modifiers for the improvement of protective properties of silicon-organic coatings,” Fiz.-Khim. Mekh. Mater., 41, No. 5, 85–89 (2005); English translation: Mater. Sci., 41, No. 5, 660–665 (2005).

  54. V. I. Pokhmurskii, I. M. Zin, L. M. Bily, and M. B. Ratushna, “The effect of inhibiting pigments on corrosion and environmentally assisted cracking of mild steel,” Inzynieria Powierzchni (Surf. Eng.), No. 2A, 177–181 (2005).

  55. V. I. Pokhmurskii, I. M. Zin, V. A. Vynar, and L. M. Bily, “Contradictory effect of chromate inhibitor on corrosive wear of aluminum alloy,” Corr. Sci., 53, 904–908 (2011).

  56. I. M. Zin’, V. I. Pokhmur’skyi, S. B. Lyon, L. M. Bilyi, and M. B. Tymus’, “A study of the inhibition of local corrosion of a duralumin alloy by nonchromate pigments,” Fiz.-Khim. Mekh. Mater., 45, No. 4, 5–11 (2009); English translation: Mater. Sci., 45, No. 4, 465–472 (2009).

  57. D. Kesavan, M. Gopiraman, and N. Sulochana, “Green inhibitors for corrosion of metals: A review,” Chem. Sci. Rev. Let., 1, No. 1, 1–8 (2012).

    Google Scholar 

  58. I. Zin’, O. Karpenko, O. Khlopyk, M. Tymus’, and B. Lytvyn, “Protective action of compositions based on phosphate and rhamnolipid biocomplex on the mechanically activated surface of aluminum alloys,” Fiz.-Khim. Mekh. Mater., Special Issue No. 12, 205–210 (2018).

  59. E. É. Chigirinets, V. I. Vorob’eva, and A. S. Berezhnitskaya, “Investigation of the chemical composition of alcohol extract of rapeseed meal,” Khim. Rastit. Syr’ya, No. 1, 209–214 (2014).

  60. Z. V. Slobodyan, L. A. Mahlatyuk, R. B. Kupovych, and Ya. M. Khaburs’kyi, “Compositions based on the extracts of oak bark and chips as corrosion inhibitors for medium-carbon steels in water,” Fiz.-Khim. Mekh. Mater., 50, No. 5, 58–66 (2014); English translation: Mater. Sci., 50, No. 5, 687–697 (2014).

  61. A. H. Fetouh, T. M. Abdel-Fattah, and M. S. El-Tantawy, “Novel plant extracts as green corrosion inhibitors for 7075-t6 aluminum alloy in an aqueous medium,” Int. J. Electrochem. Sci., 9, 1565–1582 (2014).

    Google Scholar 

  62. B. Kolwzan Biazik J., A. Czarny, E. Zaczynska, and Е. Karpenko, “Assessment of toxicity of biosurfactants produced by Pseudomonas PS-17,” Ekotoksykologia w Ochronie Srodowiska, Wyd. PZITS nr 884, 191–196 (2008).

  63. E. V. Karpenko, A. N. Shul’ga, and A. A. Turovskii, “Surface-active compounds of the Pseudomonas species PS-17 culture,” Mikrobiol. Zh., 58, No. 5, 18–24 (1996).

    Google Scholar 

  64. V. І. Pokhmurs’kyi, О. V. Karpenko, І. М. Zin’, М. B. Tymus’, and H. H. Veselivs’ka, “Inhibiting action of biogenic surfactants in corrosive media,” Fiz.-Khim. Mekh. Mater., 50, No. 3, 122–127 (2014); English translation: Mater. Sci., 50, No. 3, 448–453 (2014).

  65. G. V. Karpenko, V. I. Pokhmurskii, V. B. Dalisov, and V. S. Zamikhovskii, Influence of Diffusion Coatings on the Strength of Steel Products [in Russian], Naukova Dumka, Kiev (1971).

  66. V. I. Pokhmurskii, V. B. Dalisov, and V. D. Golubets, Enhancement of the Durability of Machine Parts with the Help of Diffusion Coatings [in Russian], Naukova Dumka, Kiev (1980).

  67. G. G. Maksimovich, V. F. Shatinskii, and M. S. Goikhman, Diffusion Coatings with Precious Metals [in Russian], Naukova Dumka, Kiev (1978).

  68. V. M. Fedirko and I. M. Pohrelyuk, Nitriding of Titanium and Its Alloys [in Ukrainian], Naukova Dumka, Kyiv (1995).

  69. V. M. Fedirko, I. M. Pohrelyuk, and O. I. Yas’kiv, Thermodiffusion Multicomponent Saturation of Titanium Alloys [in Ukrainian], Naukova Dumka, Kyiv (2009).

  70. Yu. I. Babei and N. G. Soprunyuk, Protection of Steel Against Stress Corrosion Fracture [in Russian], Tekhnika, Kiev (1981).

  71. Yu. I. Babei, Physical Foundations of the Impulsive Hardening of Steel and Cast Iron [in Russian], Naukova Dumka, Kiev (1988).

  72. H. M. Nykyforchyn, V. I. Pokhmurskii, M. D. Klapkiv, M. M. Student, and J. Ippolito, “Electrochemical characteristics of PEO treated electric arc coatings on lightweight alloys,” Adv. Mat. Res., 138, 55–62 (2010).

    Google Scholar 

  73. V. Pokhmurskii, H. Nykyforchyn, M. Student, M. Klapkiv, H. Pokhmurska, B. Wielage, T. Grund, and A. Wank, “Plasma electrolytic oxidation of arc-sprayed aluminum coatings,” J. Thermal Spray Technol., 16, Issue 5–6, 998–1004 (2007).

    Article  Google Scholar 

  74. V. I. Pokhmur’skyi, M. M. Student, and V. S. Pikh, “Fundamentals of the formation of protective and repair coatings by electric arc spraying of powder wires,” Fiz.-Khim. Mekh. Mater., 22, No. 6, 11–16 (1986); English translation: Sov. Mater. Sci., 22, No. 6, 548–553 (1986).

  75. V. I. Pokhmur’skyi, M. M. Student, V. M. Dovhunyk, H. V. Pokhmurs’ka, and I. I. Sydorak, Electric Arc Repair and Protective Coatings [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2005).

  76. H. V. Pokhmurs’ka, M. M. Student, and V. I. Pokhmur’skyi, Gas-Thermal Coatings: A Textbook [in Ukrainian], Prostir–M, Lviv (2017).

  77. V. I. Pokhmur’skyi, I. I. Sydorak, and M. M. Student, Realization of Scientific Achievements under Current Conditions [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. І. Pokhmurs’kyi.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 54, No. 4, pp. 7–20, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokhmurs’kyi, V.І. Development of Investigations in the Field of Corrosion and Stress-Corrosion Fracture of Metals and the Methods of Their Protection (A Survey). Mater Sci 54, 451–464 (2019). https://doi.org/10.1007/s11003-019-00205-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-019-00205-2

Keywords

Navigation