Skip to main content
Log in

A Chebyshev–Ritz solution for size-dependent analysis of the porous microbeams with various boundary conditions

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This research proposes a Chebyshev–Ritz solution for analysing the size-dependent behaviour of porous microbeams. The displacement field is based on the higher-order beam theory, while the size-dependent effect is accounted for using the modified couple stress theory. Moreover, porous microbeams’ elasticity moduli and mass density are assumed to be graded in the thickness direction according to four distinct distribution patterns. The open-cell metal foam exemplifies a characteristic mechanical attribute that facilitates the determination of the interrelation between coefficients of density and porosity. To derive the governing equations, the Lagrange’s principle is employed. Four types of boundary conditions, including clamped–clamped, clamped-simply supported, clamped-free, and simply-supported, along with four porosity distribution types of the beam, are considered. The Chebyshev polynomial is developed to analyse the porous microbeams’ buckling, free vibration, and bending. Furthermore, the study discusses the impacts of the material length scale parameter, porosity, slenderness, boundary condition, and porosity type on their mechanical responses. Finally, some novel results are presented, which can serve as benchmarks for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alwar, R.S., Narasimhan, M.C.: Application of chebyshev polynomials to the analysis of laminated axisymmetric spherical shells. Compos. Struct. 15(3), 215–237 (1990)

    Article  Google Scholar 

  • Amir, S., Soleimani-Javid, Z., Arshid, E.: Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM J. Appl. Math. Mech. Zeitschrift Für Angewandte Mathematik Mechanik 99(9), e201800334 (2019)

    Article  MathSciNet  Google Scholar 

  • Anirudh, B., Zineb, T.B., Polit, O., Ganapathi, M., Prateek, G.: Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach. Int. J. Non-Linear Mech. 119, 103346 (2020)

    Article  Google Scholar 

  • Arshid, E., Arshid, H., Amir, S., Mousavi, S.B.: Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch. Civ. Mech. Eng. 21(1), 1–23 (2021)

    Article  Google Scholar 

  • Babaei, H., Eslami, M.R.: Nonlinear bending analysis of size-dependent FG porous microtubes in thermal environment based on modified couple stress theory. Mech. Based Des. Struct. Mach. 50(8), 2714–2735 (2020)

    Article  Google Scholar 

  • Betts, C.: Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review. Mater. Sci. Technol. 28(2), 129–143 (2012)

    Article  Google Scholar 

  • Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)

    Article  Google Scholar 

  • Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016)

    Article  Google Scholar 

  • Chen, D., Zheng, S., Wang, Y., Yang, L., Li, Z.: Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis. Eur. J. Mech. A Solids 84, 104083 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Dehsaraji, M.L., Arefi, M., Loghman, A.: Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect. Def. Technol. 17(1), 119–134 (2021)

    Article  Google Scholar 

  • Dong, C.Y.: Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Mater. Des. 29(8), 1518–1525 (2008)

    Article  Google Scholar 

  • Ebrahimi, F., Barati, M.R., Civalek, Ö.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36(3), 953–964 (2020)

    Article  Google Scholar 

  • Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  • Eringen, A.C.: Micropolar fluids with stretch. Int. J. Eng. Sci. 7(1), 115–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MATH  Google Scholar 

  • Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Esen, I., Abdelrahman, A.A., Eltaher, M.A.: On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load. Int. J. Mech. Mater. Des. 17(3), 721–742 (2021)

    Article  Google Scholar 

  • Fang, W., Yu, T., Bui, T.Q.: Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos. Struct. 221, 110890 (2019)

    Article  Google Scholar 

  • Fattahi, A., Sahmani, S., Ahmed, N.: Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mech. Based Des. Struct. Mach. 48(4), 403–432 (2019)

    Article  Google Scholar 

  • Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  • Fox, L. and I.B. Parker, Chebyshev polynomials in numerical analysis. 1968.

  • Fu, Q., Gu, M., Yuan, J., Lin, Y.: Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway. Buildings (2022). https://doi.org/10.3390/buildings12111982

    Article  Google Scholar 

  • Gao, K., Li, R., Yang, J.: Dynamic characteristics of functionally graded porous beams with interval material properties. Eng. Struct. 197, 109441 (2019)

    Article  Google Scholar 

  • Gimon-Kinsel, M.E., Balkus, K.J., Jr.: Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors. Microporous Mesoporous Mater. 28(1), 113–123 (1999)

    Article  Google Scholar 

  • Hung, P.T., Phung-Van, P., Thai, C.H.: Small scale thermal analysis of piezoelectric–piezomagnetic FG microplates using modified strain gradient theory. Int. J. Mech. Mater. Des. (2023). https://doi.org/10.1007/s10999-023-09651-y

    Article  Google Scholar 

  • Ilanko, S., Monterrubio, L., Mochida, Y.: The Rayleigh-Ritz method for structural analysis. Wiley (2014)

    Book  MATH  Google Scholar 

  • Jamshidi, M., Arghavani, J.: Optimal material tailoring of functionally graded porous beams for buckling and free vibration behaviors. Mech. Res. Commun. 88, 19–24 (2018)

    Article  Google Scholar 

  • Jena, S.K., Chakraverty, S., Malikan, M.: Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Eng. Comput. 37(4), 3569–3589 (2021)

    Article  Google Scholar 

  • Karamanli, A., Vo, T.P.: A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Compos. Struct. 257, 113066 (2021a)

    Article  Google Scholar 

  • Karamanli, A., Vo, T.P.: Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter. Appl. Math. Model. 91, 723–748 (2021b)

    Article  MathSciNet  MATH  Google Scholar 

  • Karamanli, A., Vo, T.P., Civalek, O.: Finite element formulation of metal foam microbeams via modified strain gradient theory. Eng. Comput. 39(1), 751–772 (2022)

    Article  Google Scholar 

  • Khorshidi, M.A.: Effect of nano-porosity on postbuckling of non-uniform microbeams. SN Appl. Sci. 1(7), 1–9 (2019)

    Google Scholar 

  • Koiter, W., Couple-stresses in the theory of elasticity, I & II. (1969).

  • Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  • Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)

    Article  Google Scholar 

  • Li, L., Tang, H., Hu, Y.: Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos. Struct. 184, 1177–1188 (2018)

    Article  Google Scholar 

  • Lu, Z.-Q., Gu, D.-H., Ding, H., Lacarbonara, W., Chen, L.-Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)

    Article  Google Scholar 

  • Luo, C., Wang, L., Xie, Y., Chen, B.: A new conjugate gradient method for moving force identification of vehicle-bridge system. J. Vibr. Eng. Technol. (2022). https://doi.org/10.1007/s42417-022-00824-1

    Article  Google Scholar 

  • Mantari, J., Canales, F.: Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Compos. Struct. 152, 306–315 (2016)

    Article  Google Scholar 

  • Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  • Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S., Afshari, M.B.: Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. J. Therm. Stress. 40(10), 1201–1214 (2017)

    Article  Google Scholar 

  • Mirjavadi, S.S., Afshari, M.B., Shafiei, N., Rabby, S., Kazemi, M.: Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam. J. Vibr. Control 24(18), 4211–4225 (2018)

    Article  MathSciNet  Google Scholar 

  • Montemurro, M., Bertolino, G., Panettieri, E.: Topology optimisation of architected cellular materials from additive manufacturing: analysis, design, and experiments. Structures 47, 2220–2239 (2023)

    Article  Google Scholar 

  • Moreno-García, P., dos Santos, J.V.A., Lopes, H.: A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. Arch. Comput. Methods Eng. 25(3), 785–815 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Nan, Z., Xie, Z., Shijie, Z., Dejin, C.: Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams. Smart Mater. Struct. 29(4), 045025 (2020)

    Article  Google Scholar 

  • Nguyen, T.K., Nguyen, T.T.P., Vo, T.P., Thai, H.T.: Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Compos. Part B Eng. 76, 273–285 (2015)

    Article  Google Scholar 

  • Nguyen, N.-D., Nguyen, T.-N., Nguyen, T.-K., Vo, T.P.: A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Compos. Struct. 282, 115095 (2022)

    Article  Google Scholar 

  • Nguyen, N.-D., Nguyen, T.-N., Nguyen, T.-K., Vo, T.P.: A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation. Structures 50, 1934–1950 (2023)

    Article  Google Scholar 

  • Ramteke, P.M., Panda, S.K.: Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: a comprehensive review. Arch. Comput. Methods Eng. 30, 3437–3452 (2023)

    Article  Google Scholar 

  • Reddy, J.: A general non-linear third-order theory of plates with moderate thickness. Int. J. Non-Linear Mech. 25(6), 677–686 (1990)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press (2004)

    MATH  Google Scholar 

  • Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018)

    Article  Google Scholar 

  • Shafiei, N., Kazemi, M.: Nonlinear buckling of functionally graded nano-/micro-scaled porous beams. Compos. Struct. 178, 483–492 (2017a)

    Article  Google Scholar 

  • Shafiei, N., Kazemi, M.: Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerosp. Sci. Technol. 66, 1–11 (2017b)

    Article  Google Scholar 

  • Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S., Kazemi, M.: Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput. Methods Appl. Mech. Eng. 322, 615–632 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Şimşek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)

    Article  Google Scholar 

  • Tang, H., Li, L., Hu, Y.: Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Appl. Math. Model. 66, 527–547 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Thai, H.-T., Vo, T.P., Nguyen, T.-K., Kim, S.-E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  • Tian, L.-M., Li, M.-H., Li, L., Li, D.-Y., Bai, C.: Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. Thin Wall. Struct. 182, 110219 (2023)

    Article  Google Scholar 

  • Tong, L.H., Wen, B., Xiang, Y., Lei, Z.X., Lim, C.W.: Elastic buckling of nanoplates based on general third-order shear deformable plate theory including both size effects and surface effects. Int. J. Mech. Mater. Des. 17(3), 521–543 (2021)

    Article  Google Scholar 

  • Uymaz, B., Aydogdu, M.: Three-dimensional vibration analyses of functionally graded plates under various boundary conditions. J. Reinf. Plast. Compos. 26(18), 1847–1863 (2007)

    Article  Google Scholar 

  • Wang, Y.Q., Zhao, H.L., Ye, C., Zu, J.W.: A porous microbeam model for bending and vibration analysis based on the sinusoidal beam theory and modified strain gradient theory. Int. J. Appl. Mech. 10(05), 1850059 (2018)

    Article  Google Scholar 

  • Wattanasakulpong, N., Chaikittiratana, A., Pornpeerakeat, S.: Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta. Mech. Sin. 34(6), 1124–1135 (2018)

    Article  MathSciNet  Google Scholar 

  • Xiao, W.-S., Gao, Y., Zhu, H.: Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams. Microsyst. Technol. 25(6), 2451–2470 (2019)

    Article  Google Scholar 

  • Xiao, X., Zhang, H., Li, Z., Chen, F.: Effect of temperature on the fatigue life assessment of suspension bridge steel deck welds under dynamic vehicle loading. Math. Prob. Eng. (2022). https://doi.org/10.1155/2022/7034588

    Article  Google Scholar 

  • Xiao, X., Zhang, Q., Zheng, J., Li, Z.: Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading. Eng. Struct. 282, 115780 (2023)

    Article  Google Scholar 

  • Yang, J., Lakes, R.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)

    Article  Google Scholar 

  • Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  • Yang, K., Qin, N., Yu, H., Zhou, C., Deng, H., Tian, W., Cai, S., Wu, Z., Guan, J.: Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths. J. Market. Res. 21, 2191–2202 (2022a)

    Google Scholar 

  • Yang, N., Moradi, Z., Khadimallah, M.A., Arvin, H.: Application of the Chebyshev–Ritz route in determination of the dynamic instability region boundary for rotating nanocomposite beams reinforced with graphene platelet subjected to a temperature increment. Eng. Anal. Bound. Elem. 139, 169–179 (2022b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ye, C., Wang, Y.Q.: On the use of Chebyshev polynomials in the Rayleigh-Ritz method for vibration and buckling analyses of circular cylindrical three-dimensional graphene foam shells. Mech. Based Des. Struct. Mach. 49(7), 932–946 (2021)

    Article  Google Scholar 

  • Zhang, Y., Liu, G., Ye, J., Lin, Y.: Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos. Struct. 299, 116087 (2022a)

    Article  Google Scholar 

  • Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F., Xiao, X.: Numerical study on welding residual stress distribution of corrugated steel webs. Metals 12(11), 1831 (2022b)

    Article  Google Scholar 

  • Zhou, D.: Three-dimensional vibration analysis of structural elements using Chebyshev–Ritz method, vol. 273. Science Press, Beijing (2007)

    Google Scholar 

  • Zhou, D., Cheung, Y.K., Au, F.T.K., Lo, S.H.: Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int. J. Solids Struct. 39(26), 6339–6353 (2002)

    Article  MATH  Google Scholar 

  • Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K.: 3D vibration analysis of solid and hollow circular cylinders via Chebyshev–Ritz method. Comput. Methods Appl. Mech. Eng. 192(13–14), 1575–1589 (2003)

    Article  MATH  Google Scholar 

  • Zhou, D., Lo, S.H., Au, F.T.K., Cheung, Y.K., Liu, W.Q.: 3-D vibration analysis of skew thick plates using Chebyshev–Ritz method. Int. J. Mech. Sci. 48(12), 1481–1493 (2006)

    Article  MATH  Google Scholar 

  • Zhou, D., Lo, S.H., Cheung, Y.K.: 3-D vibration analysis of annular sector plates using the Chebyshev–Ritz method. J. Sound Vib. 320(1–2), 421–437 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work belongs to the project in 2023 funded by Ho Chi Minh City University of Technology and Education, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc-Duong Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, ND., Nguyen, TN., Nguyen, TK. et al. A Chebyshev–Ritz solution for size-dependent analysis of the porous microbeams with various boundary conditions. Int J Mech Mater Des 19, 861–881 (2023). https://doi.org/10.1007/s10999-023-09666-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-023-09666-5

Keywords

Navigation