Skip to main content
Log in

An augmented incompressible material point method for modeling liquid sloshing problems

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The incompressible material point method was proposed for modeling the free surface flow problems based on the operator splitting technique which decouples the solution of the velocity and the pressure in our previous work. To further model the coupling problems between the incompressible fluid and the moving irregular solid bodies, an augmented incompressible material point method is proposed in this paper based on the energy minimization form of operator splitting technique. The interaction between the fluid and the solid is taken into account via the work done by the fluid pressure on the solid bodies. By minimizing the total work done by the fluid pressure, volume-weighted pressure Poisson equations are obtained. The proposed method is validated with liquid sloshing in a rectangular tank subjected to various base-excitations, and is then used to study the optimal height of baffles mounted on the bottom of the tank to mitigate the sloshing wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-fluid coupling. In: ACM Transactions on Graphics (TOG), vol. 26, p. 100. ACM (2007)

  • Burghardt, J., Leavy, B., Guilkey, J., Xue, Z., Brannon, R.: Application of Uintah-MPM to shaped charge jet penetration of aluminum. In: IOP Conference Series: Materials Science and Engineering, vol. 10, p. 012223. IOP Publishing (2010)

  • Calderer, R., Zhu, L., Gibson, R., Masud, A.: Residual-based turbulence models and arbitrary Lagrangian–Eulerian framework for free surface flows. Math. Model. Methods Appl Sci. 25(12), 2287–2317 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, B.F., Nokes, R.: Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 209(1), 47–81 (2005)

    Article  MATH  Google Scholar 

  • Chen, J., Beraun, J.: A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 190(1), 225–239 (2000)

    Article  MATH  Google Scholar 

  • Chen, Z., Hu, W., Shen, L.M., Xin, X., Brannon, R.: An evaluation of the MPM for simulating dynamic failure with damage diffusion. Eng. Fract. Mech. 69, 1873–1890 (2002)

    Article  Google Scholar 

  • Chen, Z., Zong, Z., Li, H., Li, J.: An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Eng. 59, 129–141 (2013)

    Article  Google Scholar 

  • Chen, Z., Zong, Z., Liu, M.B., Li, H.T.: A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. Int. J. Numer. Methods Fluids 73(9), 813–829 (2013)

    MathSciNet  Google Scholar 

  • Chen, Z.P., Qiu, X.M., Zhang, X., Lian, Y.P.: Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm. Comput. Methods Appl. Mech. Eng. 293(15), 1–19 (2015)

    Article  MathSciNet  Google Scholar 

  • Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Colin, F., Egli, R., Lin, F.Y.: Computing a null divergence velocity field using smoothed particle hydrodynamics. J. Comput. Phys. 217(2), 680–692 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Faltinsen, O.M.: A numerical nonlinear method of sloshing in tanks with two-dimensional flow. J. Ship Res. 22(3), 193–202 (1978)

    Google Scholar 

  • Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A., Timokha, A.N.: Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 407, 201–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Faltinsen, O.M., Timokha, A.N.: Sloshing, pp. 125–126 (2009)

  • Fang, J., Parriaux, A.: A regularized lagrangian finite point method for the simulation of incompressible viscous flows. J. Comput. Phys. 227(20), 8894–8908 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM (2001)

  • Gilabert, F.A., Cantavella, V.C., Sanchez, E., Mallol, G.: Modelling fracture process in ceramic materials using the Material Point Method. Eur. Phys. Lett. 96, 24002 (2011)

    Article  Google Scholar 

  • Gong, K., Shao, S., Liu, H., Wang, B., Tan, S.K.: Two-phase sph simulation of fluid-structure interactions. J. Fluids Struct. 65, 155–179 (2016)

    Article  Google Scholar 

  • Goudarzi, M.A., Sabbagh-Yazdi, S.R.: Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dyn. Earthq. Eng. 43, 355–365 (2012)

    Article  Google Scholar 

  • Gui, Q., Dong, P., Shao, S.: Numerical study of ppe source term errors in the incompressible sph models. Int. J. Numer. Meth. Fluids 77(6), 358–379 (2015)

    Article  MathSciNet  Google Scholar 

  • Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  • Huang, P., Zhang, X., Ma, S.: Shared memory OpenMP parallelization of explicit mpm and its application to hypervelocity impact. CMES Comput. Model. Eng. Sci. 38, 119–147 (2008)

    MATH  Google Scholar 

  • Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng. 85(4), 498–517 (2011)

    Article  MATH  Google Scholar 

  • Hughes, T.J., Liu, W.K., Zimmermann, T.K.: Lagrangian-eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014)

    Article  Google Scholar 

  • Kolaei, A., Rakheja, S., Richard, M.J.: A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container. Comput. Fluids 107, 43–58 (2015)

    Article  MathSciNet  Google Scholar 

  • Komatsu, K.: Non-linear sloshing analysis of liquid in tanks with arbitrary geometries. Int. J. Non-linear Mech. 22(3), 193–207 (1987)

    Article  MATH  Google Scholar 

  • Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123(3), 421–434 (1996)

    Article  Google Scholar 

  • Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227(18), 8417–8436 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J.G., Hamamoto, Y., Liu, Y., Zhang, X.: Sloshing impact simulation with material point method and its experimental validations. Comput. Fluids 103, 86–99 (2014)

    Article  MathSciNet  Google Scholar 

  • Lian, Y.P., Liu, Y., Zhang, X.: Coupling of membrane element with material point method for fluid-membrane interaction problems. Int. J. Mech. Mater. Des. 10(2), 199–211 (2014)

    Article  Google Scholar 

  • Lian, Y.P., Zhang, X., Zhang, F., Cui, X.X.: Tied interface grid material point method for problems with localized extreme deformation. Int. J. Impact Eng. 70, 50–61 (2014)

    Article  Google Scholar 

  • Lian, Y.P., Zhang, X., Zhou, X., Ma, Z.T.: A FEMP method and its application in modeling dynamic response of reinforced concrete subjected to impact loading. Comput. Methods Appl. Mech. Eng. 200(17–20), 1659–1670 (2011)

    Article  MATH  Google Scholar 

  • Liu, M., Shao, J., Chang, J.: On the treatment of solid boundary in smoothed particle hydrodynamics. Sci. China Technol. Sci. 55(1), 244–254 (2012)

    Article  Google Scholar 

  • Liu, P., Liu, Y., Zhang, X.: Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact. Int. J. Impact Eng. 77, 120–133 (2015)

    Article  Google Scholar 

  • Liu, P., Liu, Y., Zhang, X.: Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with internal-structure model. Int. J. Mech. Mater. Des. 12(2), 241–254 (2016)

    Article  MathSciNet  Google Scholar 

  • Ma, S., Zhang, X., Lian, Y.P., Zhou, X.: Simulation of high explosive explosion using adaptive material point method. CMES Comput. Model. Eng. Sci. 39(2), 101–123 (2009)

    MathSciNet  MATH  Google Scholar 

  • Ma, S., Zhang, X., Qiu, X.M.: Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int. J. Impact Eng. 36, 272–282 (2009)

    Article  Google Scholar 

  • Ma, Z., Zhang, X., Huang, P.: An object-oriented MPM framework for simulation of large deformation and contact of numerous grains. CMES Comput. Model. Eng. Sci. 55(1), 61–87 (2010)

    Google Scholar 

  • Mast, C.M., Mackenzie-Helnwein, P., Arduino, P., Miller, G.R., Shin, W.: Mitigating kinematic locking in the material point method. J. Comput. Phys. 231(16), 5351–5373 (2012)

    Article  MathSciNet  Google Scholar 

  • Miles, J.W.: Resonantly forced surface waves in a circular cylinder. J. Fluid Mech. 149, 15–31 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  MATH  Google Scholar 

  • Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136(1), 214–226 (1997)

    Article  MATH  Google Scholar 

  • Nairn, J.A.: Numerical implementation of imperfect interfaces. Comput. Mater. Sci. 40, 525–536 (2007)

    Article  Google Scholar 

  • Nakayama, T., Washizu, K.: The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. Int. J. Numer. Methods Eng. 17(11), 1631–1646 (1981)

    Article  MATH  Google Scholar 

  • Okamoto, T., Kawahara, M.: Two-dimensional sloshing analysis by lagrangian finite element method. Int. J. Numer. Methods Fluids 11(5), 453–477 (1990)

    Article  MATH  Google Scholar 

  • Onate, E.: A finite point method in computational mechanics. Int. J. Numer. Methods Eng. 39, 3839–3866 (1996)

    Article  MATH  Google Scholar 

  • Shao, S., Lo, E.Y.: Incompressible sph method for simulating newtonian and non-newtonian flows with a free surface. Adv. Water Resour. 26(7), 787–800 (2003)

    Article  Google Scholar 

  • Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, H.L., Nairn, J.A.: Hierarchical, adaptive, material point method for dynamic energy release rate calculations. Comput. Methods Appl. Mech. Eng. 191(19–20), 2095–2109 (2002)

    MATH  Google Scholar 

  • Tang, B., Li, J., Wang, T.: The least square particle finite element method for simulating large amplitude sloshing flows. Acta Mech. Sin. 24(3), 317–323 (2008)

    Article  MATH  Google Scholar 

  • Tran, L.T., Kim, J., Berzins, M.: Solving time-dependent PDEs using the material point method, a case study from gas dynamics. Int. J. Numer. Methods Fluids 62(7), 709–732 (2010)

    MathSciNet  MATH  Google Scholar 

  • Wu, C.H., Faltinsen, O.M., Chen, B.F.: Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluids 63, 9–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, X., Liu, M., Peng, S.: Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput. Fluids 92, 199–208 (2014)

    Article  MathSciNet  Google Scholar 

  • York, A.R., Sulsky, D., Schreyer, H.L.: Fluid-membrane interaction based on the material point method. Int. J. Numer. Methods Eng. 48, 901–924 (2000)

    Article  MATH  Google Scholar 

  • Zhang, F., Zhang, X., Sze, K.Y., Lian, Y., Liu, Y.: Incompressible material point method for free surface flow. J. Comput. Phys. 330, 92–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Chen, Z., Liu, Y.: The Material Point Method - A Continuum-Based Particle Method for Extreme Loading Cases. Academic Press, London (2016)

    Google Scholar 

  • Zhu, Y.N., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. (TOG) 24(3), 965–972 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11272180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, X. & Liu, Y. An augmented incompressible material point method for modeling liquid sloshing problems. Int J Mech Mater Des 14, 141–155 (2018). https://doi.org/10.1007/s10999-017-9366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9366-5

Keywords

Navigation