Skip to main content
Log in

A new design of magnetorheological fluid based braking system using genetic algorithm optimization

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper proposes a new design for an automotive magnetorheological (MR) braking system using multiple rotary disks. We develop an analytical model to calculate the torque and validate our results using finite element analysis considering a non-linear relationship between magnetic field and magnetic flux. Using genetic algorithm, we optimize the system’s dimensions to generate maximum torque. The optimized geometry shows an improvement in output torque compared to existing systems. Moreover, our design directs higher flux onto the MR fluid and subsequently generates greater shear frictions. This design can be used in applications such as rehabilitation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Assadsangabi, B., Daneshmand, F., Vahdati, N., Eghtesad, M., Bazargan-Lari, Y.: Optimization and design of disk type MR brakes. Int. J. Automot. Technol. 12(6), 921–932 (2011)

    Article  Google Scholar 

  • Avraam, M., Horodinca, M., Letier, P., Preumont, A.: Portable smart wrist rehabilitation device driven by rotational MR fluid brake actuator for telemedecine applications. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2008, pp. 1441–1446. IEEE, Sept 2008

  • Avraam, M.T.: Magnetorehological fuid brake design and its application to a portable muscular rehabilitation device. Master’s thesis, Universite Libre de Bruxelles (2009)

  • Bucchi, F., Forte, P., Frendo, F.: Temperature effect on the torque characteristic of a magnetorheological clutch. Mech. Adv. Mater. Struct. 22(1–2), 150–158 (2015)

    Article  Google Scholar 

  • Chi, Z., Zhang, D.: Multi-objective optimization of stiffness and workspace for a parallel kinematic machine. Int. J. Mech. Mater. Des. 9(3), 281–293 (2013)

    Article  Google Scholar 

  • Du, G., Chen, X.: MEMS magnetometer based on magnetorheological elastomer measurement. J. Int. Meas. Confed. 45(1), 54–58 (2012)

    Article  Google Scholar 

  • Erol, O., Gurocak, H.: Interactive design optimization of magnetorheological brake actuators using the taguchi method. Smart Mater. Struct. 20(10), 105027 (2011)

    Article  Google Scholar 

  • Hong, S.R., Choi, S.B., Jung, W.J., Jeong, W.B.: Vibration isolation of structural systems using squeeze mode ER mounts. J. Intell. Mater. Syst. Struct. 7(8), 421–424 (2002)

    Article  Google Scholar 

  • Huang, J., Zhang, J.Q., Yang, Y., Wei, Y.Q.: Analysis and design of a cylindrical magnetorheological fluid brake. J. Mater. Process. Technol. 129, 559–562 (2002)

    Article  Google Scholar 

  • Hung, N.Q., Bok, C.S.: Optimal design of a T-shaped drum-type brake for motorcycle utilizing magnetorheological fluid. Mech. Based Des. Struct. Mach. 40(2), 153–162 (2012)

    Article  Google Scholar 

  • Karakoc, K., Park, E.J., Suleman, A.: Design considerations for an automotive magnetorheological brake. Mechatronics 18(8), 434–447 (2008)

    Article  Google Scholar 

  • Kwan, A.K., Nam, T.H., Young, Y.: New approach to design MR brake using a small steel roller as a large size magnetic particle. In: International conference on control, automation and systems, ICCAS 2008, pp. 2640–2644. IEEE, Oct 2008

  • Li, W.H., Du, H.: Design and experimental evaluation of magnetorheological brake. Adv. Manuf. Technol. 21(7), 508–515 (2003)

    Article  Google Scholar 

  • Liu, G.P., Han, X., Jiang, C.: An efficient multi-objective optimization approach based on the micro genetic algorithm and its application. Int. J. Mech. Mater. Des. 8(1), 37–49 (2012)

    Article  Google Scholar 

  • Lord Corporation, Technical Datasheet (2008)

  • Nam, T.H., Ahn, K.K.: A new structure of MR brake with the waveform boundary of rotary disk. In: ICCAS-SICE, 2009, pp. 2997–3002 (2009)

  • Nguyen, Q., Choi, S.: Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero field friction heat. Smart Mater. Struct. 19(11), 115024 (2010)

    Article  Google Scholar 

  • Nguyen, Q., Choi, S.: Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume. Smart Mater. Struct. 21(1), 015012 (2012)

    Article  Google Scholar 

  • Nguyen, Q.H., Lang, V.T., Nguyen, N.D., Choi, S.B.: Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope. Smart Mater. Struct. 23(1), 015020 (2014)

    Article  Google Scholar 

  • Niranjan, M., Jha, S., Kotnala, R.K.: Ball end magnetorheological finishing using bidisperse magnetorheological polishing fluid. Mater. Manuf. Process. 29(4), 487–492 (2014)

    Article  Google Scholar 

  • Park, E.J., Stoikov, D., da Luz, L.F., Suleman, A.: A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller. Mechatronics 16(7), 405–416 (2006)

    Article  Google Scholar 

  • Park, E.J., da Luz, L.F., Suleman, A.: Multidisciplinary design optimization of an automotive magnetorheological brake design. Comput. Struct. 86(3), 207–216 (2008)

    Article  Google Scholar 

  • Rajamohan, V., Sedaghati, R., Rakheja, S.: Vibration analysis of a multi-layer beam containing magnetorheological fluid. Smart Mater. Struct. 19(1), 015013 (2010)

    Article  Google Scholar 

  • Rankin, P.J., Ginder, J.M., Klingenberg, D.J.: Electro- and magneto-rheology. Curr. Opin. Colloid Interface Sci. 3(4), 373–381 (1998)

    Article  Google Scholar 

  • Sarkar, C., Hirani, H.: Design of a squeeze film magnetorheological brake considering compression enhanced shear yield stress of magnetorheological fluid. In: Journal of Physics: Conference Series, vol. 412, p. 012045. IOP Publishing (2013)

  • Singh, A.K., Jha, S., Pandey, P.M.: Magnetorheological ball end finishing process. Mater. Manuf. Process. 27(4), 389–394 (2012)

    Article  Google Scholar 

  • Talbi, E.-G.: Metaheuristics: from design to implementation, vol. 74. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  • Venkatachalam, R., Prabu, S.B., Raja, K.V.: Effect of constrained layers on vibrational characteristics of a composite sandwich system—a finite element based critical investigation. Int. J. Mech. Mater. Des. 7(4), 291–298 (2011)

    Article  Google Scholar 

  • Weiss, K.D., Carlson, J.D., Nixon, D.A.: Viscoelastic properties of magneto- and electro-rheological fluids. J. Intell. Mater. Syst. Struct. 5(6), 772–775 (1994)

    Article  Google Scholar 

  • Yang Jr, G., Carlson, D., Sain, K.: Large-scale MR fluid dampers: modeling and dynamic performance considerations. Eng. Struct. 24, 309–323 (2002)

    Article  Google Scholar 

  • Yao, G., Yap, F., Chen, G., Li, W., Yeo, S.: MR damper and its application for semi-active control of vehicle suspension system. Mechatronics 12(7), 963–973 (2002)

    Article  Google Scholar 

  • Yazid, I.I.M., Mazlan, S.A., Kikuchi, T., Zamzuri, H., Imaduddin, F.: Design of magnetorheological damper with a combination of shear and squeeze modes. Mater. Des. 54, 87–95 (2014)

    Article  Google Scholar 

  • Yeh, Z.F., Shih, Y.S.: Dynamic stability of a sandwich beam with magnetorheological core. Mech. Based Des. Struct. Mach. 34(2), 181–200 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadhossein Hajiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiyan, M., Mahmud, S., Biglarbegian, M. et al. A new design of magnetorheological fluid based braking system using genetic algorithm optimization. Int J Mech Mater Des 12, 449–462 (2016). https://doi.org/10.1007/s10999-015-9322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-015-9322-1

Keywords

Navigation