Skip to main content
Log in

Sums of divisors on arithmetic progressions

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For each \(s\in {\mathbb {R}}\) and \(n\in {\mathbb {N}}\), let \(\sigma _s(n) = \sum _{d\mid n}d^s\). In this article, we study the number of sign changes in the difference \(\sigma _s(an+b)-\sigma _s(cn+d)\) where a, b, c, d, s are fixed, the vectors (ab) and (cd) are linearly independent over \({\mathbb {Q}}\), and n runs over all positive integers. We also give several examples and propose some problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Aldaz, A. Bravo, S. Gutiérrez, A. Ubis, A theorem of D. J. Newman on Euler’s \(\varphi \) function and arithmetic progressions. Am. Math. Mon. 108, 364–367 (2001)

    MathSciNet  Google Scholar 

  2. C. Bays, R.H. Hudson, A new bound for the smallest \(x\) with \(\pi (x)>\text{ Li }(x)\). Math. Comput. 69, 1285–1296 (2000)

    Article  MathSciNet  Google Scholar 

  3. Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, On Fibonacci numbers with few prime divisors. Proc. Jpn. Acad. Ser. A Math. Sci. 81, 17–20 (2005)

    Article  MathSciNet  Google Scholar 

  4. D.A. Goldston, S.W. Graham, J. Pintz, C.Y. Yildirim, Small gaps between almost primes, the parity problem, and some conjecture of Erdős on consecutive integers. Int. Math. Res. Not. 7, 1439–1450 (2011)

    Google Scholar 

  5. M. Jaidee, P. Pongsriiam, Arithmetic functions of Fibonacci and Lucas numbers. Fibonacci Q. 57(3), 246–254 (2019)

    MathSciNet  Google Scholar 

  6. D. Jarden, Recurring Sequences (Riveon Lematematika, Jerusalem, 1973)

    Google Scholar 

  7. R. Khan, The divisor function in arithmetic progressions modulo prime powers. Mathematika 62, 898–908 (2016)

    Article  MathSciNet  Google Scholar 

  8. N. Khaochim, P. Pongsriiam, On the order of appearance of products of Fibonacci numbers. Contrib. Discrete Math. 13(2), 45–62 (2018)

    MathSciNet  Google Scholar 

  9. S. Knapowski, P. Turan, Comparative prime number theory VIII. Acta Math. Acad. Sci. Hung. 14, 251–268 (1963)

    Article  MathSciNet  Google Scholar 

  10. S. Knapowski, P. Turan, Further developments in the comparative prime number theory VI. Acta Arith. 12, 85–96 (1966)

    Article  MathSciNet  Google Scholar 

  11. S. Knapowski, P. Turan, Further developments in the comparative prime number theory VII. Acta Arith. 21, 193–201 (1972)

    Article  MathSciNet  Google Scholar 

  12. K. Liu, I. Shparlinski, T. Zhang, Divisor problem in arithmetic progressions modulo a prime power. Adv. Math. 325, 459–481 (2018)

    Article  MathSciNet  Google Scholar 

  13. L. Lovász, I.Z. Ruzsa, V.T. Sós, Erdős Centennial (Bolyai Society Mathematical Studies, Springer, 2013)

  14. F. Luca, Arithmetic functions of Fibonacci numbers. Fibonacci Q. 37(3), 265–268 (1999)

    MathSciNet  Google Scholar 

  15. G. Martin, The smallest solution of \(\phi (3n+1)<\phi (30n)\) is \(\ldots \). Am. Math. Mon. 106, 449–451 (1999)

    Google Scholar 

  16. X. Meng, Number of prime factors over arithmetic progressions. Q. J. Math. 71(1), 97–121 (2020)

    Article  MathSciNet  Google Scholar 

  17. D.J. Newman, Euler’s \(\phi \) function on arithmetic progressions. Am. Math. Mon. 104, 256–257 (1997)

    MathSciNet  Google Scholar 

  18. K. Onphaeng, P. Pongsriiam, Exact divisibility by powers of the integers in the Lucas sequence of the first kind. AIMS Math. 5(6), 6739–6748 (2020)

    Article  MathSciNet  Google Scholar 

  19. K. Onphaeng, P. Pongsriiam, Exact divisibility by powers of the integers in the Lucas sequences of the first and second kinds. AIMS Math. 6(11), 11733–11748 (2021)

    Article  MathSciNet  Google Scholar 

  20. P. Phunphayap, P. Pongsriiam, Explicit formulas for the \(p\)-adic valuations of Fibonomial coefficients II. AIMS Math. 5(6), 5685–5699 (2020)

    Article  MathSciNet  Google Scholar 

  21. P. Pongsriiam, A complete formula for the order of appearance of the powers of Lucas numbers. Commun. Korean Math. Soc. 31(3), 447–450 (2016)

    Article  MathSciNet  Google Scholar 

  22. P. Pongsriiam, The order of appearance of factorials in the Fibonacci sequence and certain Diophantine equations. Period. Math. Hungar. 79(2), 141–156 (2019)

    Article  MathSciNet  Google Scholar 

  23. P. Pongsriiam, Fibonacci and Lucas numbers which have exactly three prime factors and some unique properties of \(F_{18}\) and \(L_{18}\). Fibonacci Q. 57(5), 130–144 (2019)

    MathSciNet  Google Scholar 

  24. P. Pongsriiam, R.C. Vaughan, The divisor function on residue classes I. Acta Arith. 168(4), 369–381 (2015)

    Article  MathSciNet  Google Scholar 

  25. P. Pongsriiam, R.C. Vaughan, The divisor function on residue classes II. Acta Arith. 182(2), 133–181 (2018)

    Article  MathSciNet  Google Scholar 

  26. P. Pongsriiam, R.C. Vaughan, The divisor function on residue classes III. Ramanujan J. 56(2), 697–719 (2021)

    Article  MathSciNet  Google Scholar 

  27. A. Schinzel, Erdős work on the sum of divisors function and on Euler’s function, in Erdős Centennial. ed. by L. Lovász, I.Z. Ruzsa, V.T. Sós (Bolyai Society Mathematical Studies, Springer, 2013), pp.585–610

    Chapter  Google Scholar 

  28. R.J. Wang, Y.G. Chen, On positive integers \(n\) with \(\sigma _\ell (2n+1) < \sigma _\ell (2n)\). Period. Math. Hungar. 85, 210–224 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Prapanpong Pongsriiam’s research project is jointly funded by the Faculty of Science Silpakorn University and the National Research Council of Thailand (NRCT), Grant Number NRCT5-RSA63021-02. The author is also supported by the Tosio Kato Fellowship given by the Mathematical Society of Japan during his visit at Nagoya University in July 2022 to July 2023. Napp Phunphayap helped him with the computer programming. The anonymous reviewer gave him many kind and helpful comments which improve the quality of this article. He is grateful to them all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prapanpong Pongsriiam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pongsriiam, P. Sums of divisors on arithmetic progressions. Period Math Hung (2023). https://doi.org/10.1007/s10998-023-00566-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10998-023-00566-x

Keywords

Mathematics Subject Classification

Navigation