Skip to main content
Log in

On sums of coefficients of Borwein type polynomials over arithmetic progressions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We obtain asymptotic formulas for sums over arithmetic progressions of coefficients of polynomials of the form \( \prod _{j=1}^n\prod _{k=1}^{p-1}(1-q^{pj-k})^s, \) where p is an odd prime and ns are positive integers. Precisely, let \(a_i\) denote the coefficient of \(q^i\) in the above polynomial and suppose that b is an integer. We prove that \( \Big |\sum _{i\equiv b\ \mathrm{mod}\ 2pn}a_i-\frac{v(b)p^{sn}}{2pn}\Big |\le p^{sn/2},\) where \(v(b)=p-1\) if b divisible by p and \(v(b)=-1\) otherwise. This improves a recent result of Goswami and Pantangi (Ramanujan J, 2021. https://doi.org/10.1007/s11139-020-00352-0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Andrews, G.: On a conjecture of Peter Borwein. J. Symbol. Comput. 20, 487–501 (1995)

    Article  MathSciNet  Google Scholar 

  2. Berkovich, A.: Some new positive observations. Discret. Math. 343(11), 112040 (2020)

    Article  MathSciNet  Google Scholar 

  3. Berkovich, A., Warnaar, S.O.: Positivity preserving transformations for \(q\)-binomial coefficients. Trans. Am. Math. Soc. 357, 2291–2351 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bhatnagar, G., Schlosser, M.J.: A partial theta function Borwein conjecture. Ann. Comb. 23(3–4), 561–572 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bressoud, D.M.: The Borwein conjecture and partitions with prescribed hook differences. Electron. J. Comb. 3, 1–14 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Goswami, A., Pantangi, V.R.T.: On sums of coefficients of polynomials related to the Borwein conjectures. Ramanujan J. (2021). https://doi.org/10.1007/s11139-020-00352-0

  7. Ismail, M.E.H., Kim, D., Stanton, D.: Lattice paths and positive trigonometric sums. Constr. Approx. 15, 69–81 (1999)

    Article  MathSciNet  Google Scholar 

  8. Li, J., Wan, D.: A new sieve for distinct coordinate counting. Sci. China Math. (Springer) 53(9), 2351–2362 (2010)

    Article  MathSciNet  Google Scholar 

  9. Li, J.: On the Borwein conjecture. International Journal of Number Theory 16, 1053–1066 (2020)

    Article  MathSciNet  Google Scholar 

  10. Rajković, P.M., Petković, M.D.: Generalized Borwein conjecture and partitions of natural numbers. Funct. Anal. Approx. Comput. 1, 47–56 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Wang, C.: An analytic proof of the Borwein conjecture. arXiv:1901.10886 (2019)

  12. Warnaar, S.O.: The generalized Borwein conjecture. I. The Burge transform, in \(q\)-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2001). Contemp. Math. 291, 243–267 (2000)

    Article  Google Scholar 

  13. Warnaar, S.O.: The generalized Borwein conjecture. II. Refined \(q\)-trinomial coefficients. Discret. Math. 272, 215–258 (2003)

    Article  MathSciNet  Google Scholar 

  14. Zaharescu, A.: Borwein conjecture on average over arithmetic progression. Ramanujan J. 11, 95–102 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Science Foundation of China (11771280)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, X. On sums of coefficients of Borwein type polynomials over arithmetic progressions. Ramanujan J 59, 143–155 (2022). https://doi.org/10.1007/s11139-021-00512-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00512-w

Keywords

Mathematics Subject Classification

Navigation