Skip to main content

Intracellular Production of Cyclic Peptide Libraries with SICLOPPS

  • Protocol
  • First Online:
Split Inteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

Abstract

Cyclic peptides are an important class of molecules that are increasingly viewed as an ideal scaffold for inhibition of protein–protein interactions (PPI). Here we detail an approach that enables the intracellular synthesis of cyclic peptide libraries of around 108 members. The method utilizes split intein mediated circular ligation of peptides and proteins (SICLOPPS), taking advantage of split intein splicing to cyclize a library of peptide sequences. SICLOPPS allows the ring size, set residues and number of random residues within a library to be predetermined by the user. SICLOPPS libraries have been combined with a variety of cell-based screens to identify cyclic peptide inhibitors of a variety of enzymes and protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drews J (1996) Genomic sciences and the medicine of tomorrow. Nat Biotechnol 14(11):1516–1518

    Article  CAS  PubMed  Google Scholar 

  3. Boldt GE, Dickerson TJ, Janda KD (2006) Emerging chemical and biological approaches for the preparation of discovery libraries. Drug Discov Today 11(3–4):143–148

    Article  CAS  PubMed  Google Scholar 

  4. Brey DM, Motlekar NA, Diamond SL, Mauck RL, Garino JP, Burdick JA (2011) High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation. Biotechnol Bioeng 108(1):163–174

    Article  CAS  PubMed  Google Scholar 

  5. Kneller R (2010) The importance of new companies for drug discovery: origins of a decade of new drugs. Nat Rev Drug Discov 9(11):867–882

    Article  CAS  PubMed  Google Scholar 

  6. Liu RW, Marik J, Lam KS (2003) Design, synthesis, screening, and decoding of encoded one-bead one-compound peptidomimetic and small molecule combinatorial libraries. Methods Enzymol 369:271–287

    Article  CAS  PubMed  Google Scholar 

  7. Lennard KR, Tavassoli A (2014) Peptides Come round: using SICLOPPS libraries for early stage drug discovery. Chemistry 20(34):10608–10614

    Article  CAS  PubMed  Google Scholar 

  8. Angelini A, Cendron L, Chen S, Touati J, Winter G, Zanotti G, Heinis C (2012) Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem Biol 7(5):817–821

    Article  CAS  PubMed  Google Scholar 

  9. Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nat Protoc 6(6):779–790

    Article  CAS  PubMed  Google Scholar 

  10. Ito K, Passioura T, Suga H (2013) Technologies for the synthesis of mRNA-encoding libraries and discovery of bioactive natural product-inspired non-traditional macrocyclic peptides. Molecules 18(3):3502–3528

    Article  CAS  PubMed  Google Scholar 

  11. Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ (1999) Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci 96(24):13638–13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tavassoli A, Benkovic SJ (2005) Genetically selected cyclic-peptide inhibitors of AICAR transformylase homodimerization. Angew Chem Int Ed Engl 44(18):2760–2763

    Article  CAS  PubMed  Google Scholar 

  13. Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6(5):821–824

    Article  CAS  PubMed  Google Scholar 

  14. Tavassoli A, Benkovic SJ (2007) Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E-coli. Nat Protoc 2(5):1126–1133

    Article  CAS  PubMed  Google Scholar 

  15. Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmink J (2011) Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. Chembiochem 12(11):1626–1653

    Article  CAS  PubMed  Google Scholar 

  16. Menegatti S, Hussain M, Naik AD, Carbonell RG, Rao BM (2013) mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands. Biotechnol Bioeng 110(3):857–870

    Article  CAS  PubMed  Google Scholar 

  17. Kinsella TM, Ohashi CT, Harder AG, Yam GC, Li WQ, Peelle B, Pali ES, Bennett MK, Molineaux SM, Anderson DA, Masuda ES, Payan DG (2002) Retrovirally delivered random cyclic peptide libraries yield inhibitors of interleukin-4 signaling in human B cells. J Biol Chem 277(40):37512–37518

    Article  CAS  PubMed  Google Scholar 

  18. Kritzer JA, Hamamichi S, McCaffery JM, Santagata S, Naumann TA, Caldwell KA, Caldwell GA, Lindquist S (2009) Rapid selection of cyclic peptides that reduce [alpha]-synuclein toxicity in yeast and animal models. Nat Chem Biol 5(9):655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horswill AR, Savinov SN, Benkovic SJ (2004) A systematic method for identifying small-molecule modulators of protein-protein interactions. Proc Natl Acad Sci U S A 101(44):15591–15596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asby DJ, Cuda F, Beyaert M, Houghton FD, Cagampang FR, Tavassoli A (2015) AMPK activation via modulation of de novo purine biosynthesis with an inhibitor of ATIC homodimerization. Chem Biol 22(7):838–848

    Article  CAS  PubMed  Google Scholar 

  21. Spurr IB, Birts CN, Cuda F, Benkovic SJ, Blaydes JP, Tavassoli A (2012) Targeting tumour proliferation with a small-molecule inhibitor of AICAR transformylase homodimerization. Chembiochem 13(11):1628–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Birts CN, Nijjar SK, Mardle CA, Hoakwie F, Duriez PJ, Blaydes JP, Tavassoli A (2013) A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem Sci 4(8):3046–3057. doi:10.1039/C3sc50481f

    Article  CAS  Google Scholar 

  23. Miranda E, Nordgren IK, Male AL, Lawrence CE, Hoakwie F, Cuda F, Court W, Fox KR, Townsend PA, Packham GK, Eccles SA, Tavassoli A (2013) A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J Am Chem Soc 135(28):10418–10425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Warren DJ (2011) Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal Biochem 413(2):206–207

    Article  CAS  PubMed  Google Scholar 

  25. Naumann TA, Savinov SN, Benkovic SJ (2005) Engineering an affinity tag for genetically encoded cyclic peptides. Biotechnol Bioeng 92(7):820–830

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tavassoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Osher, E.L., Tavassoli, A. (2017). Intracellular Production of Cyclic Peptide Libraries with SICLOPPS. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics