Skip to main content

Advertisement

Log in

Efficacy Comparison of TAT Peptide-Functionalized PEGylated Liposomal Doxorubicin in C26 and B16F0 Tumor Mice Models

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the antitumor activity of PEGylated liposomal doxorubicin (Dox) functionalized with TAT peptide through PEG1000 while the surface of the liposome is covered by PEG2000 molecule. The size (nm) of liposomal formulations ranged from 90 to 140 nm, and all formulations had a negative zeta potential. The in vitro cellular uptake and cytotoxicity effects of formulations were investigated on C26 and B16F0 cell lines. Biodistribution and antitumor activity of formulations were investigated on BALB/c and C57BL/6 mice bearing C26 and B16F0 tumor models, respectively. In vitro and results on the C26 cell line indicated the higher efficacy of 100-ligand formulation, while in the case of B16F0 cell line 400-ligand formulation was the most efficient formulation. Since the TAT-peptide enters the cell through heparan sulfate proteoglycans, the difference in results may be due to the differences in expression levels and the intraspecies distribution between proteoglycans. Altogether our data indicate that surface-functionalization of liposome with TAT peptide via PEG1000 improves its antitumor efficacy and merit future considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1.
Figure. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amin M, Badiee A, Jaafari MR (2013) Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int J Pharm 458:324–333

    Article  CAS  Google Scholar 

  • Amin M, Bagheri M, Mansourian M et al (2018) Regulation of in vivo behavior of TAT-modified liposome by associated protein corona and avidity to tumor cells. Int J Nanomed 13:7441

    Article  CAS  Google Scholar 

  • Arabi L, Badiee A, Mosaffa F, Jaafari MR (2015) Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release 220:275–286

    Article  CAS  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    Article  CAS  Google Scholar 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702

    Article  CAS  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941

    Article  CAS  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Article  CAS  Google Scholar 

  • Chang M, Zhang F, Wei T et al (2016) Smart linkers in polymer–drug conjugates for tumor-targeted delivery. J Drug Target 24:475–491

    Article  CAS  Google Scholar 

  • Danaei M, Dehghankhold M, Ataei S et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57

    Article  Google Scholar 

  • Darban SA, Badiee A, Jaafari MR (2017) PNC27 anticancer peptide as targeting ligand significantly improved antitumor efficacy of Doxil in HDM2-expressing cells. Nanomedicine. https://doi.org/10.2217/nnm-2017-0069

    Article  PubMed  Google Scholar 

  • Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine 8:1509–1528

    Article  CAS  Google Scholar 

  • Ferrari A, Pellegrini V, Arcangeli C et al (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8:284–294

    Article  CAS  Google Scholar 

  • Golombek SK, May J-N, Theek B et al (2018) Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev 130:17–38

    Article  CAS  Google Scholar 

  • Ishida T, Ichikawa T, Ichihara M et al (2004) Effect of the physicochemical properties of initially injected liposomes on the clearance of subsequently injected PEGylated liposomes in mice. J Control Release 95:403–412

    Article  CAS  Google Scholar 

  • Karimi M, Gheybi F, Zamani P et al (2020) Preparation and characterization of stable nanoliposomal formulations of Curcumin with high loading efficacy: In vitro and in vivo anti-tumor study. Int J Pharm 580:119211

    Article  CAS  Google Scholar 

  • Korani M, Ghaffari S, Attar H et al (2019) Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomed Nanotechnol Biol Med. https://doi.org/10.1016/j.nano.2019.04.016

    Article  Google Scholar 

  • Lories V, Cassiman J-J, Van den Berghe H, David G (1992) Differential expression of cell surface heparan sulfate proteoglycans in human mammary epithelial cells and lung fibroblasts. J Biol Chem 267:1116–1122

    Article  CAS  Google Scholar 

  • Mashreghi M, Faal Maleki M, Karimi M, et al (2020a) Improving antitumor efficacy of PEGylated liposomal doxorubicin by dual targeting of tumor cells and tumor endothelial cells using anti-p32 CGKRK peptide. J Drug Target 1–35

  • Mashreghi M, Zamani P, Moosavian SA, Jaafari MR (2020b) Anti-Epcam Aptamer (Syl3c)-functionalized liposome for targeted delivery of doxorubicin: in vitro and in vivo antitumor studies in mice bearing C26 colon carcinoma. Nanoscale Res Lett 15:101. https://doi.org/10.1186/s11671-020-03334-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–860

    Article  CAS  Google Scholar 

  • Moosavian SA, Abnous K, Akhtari J et al (2018) 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif Cells Nanomed Biotechnol 46:2054–2065

    CAS  PubMed  Google Scholar 

  • Nichols JW, Bae YH (2014) EPR: Evidence and fallacy. J Control Release 190:451–464

    Article  CAS  Google Scholar 

  • Romani B, Engelbrecht S, Glashoff RH (2010) Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 91:1–12

    Article  CAS  Google Scholar 

  • Rosenblum D, Joshi N, Tao W et al (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1410

    Article  Google Scholar 

  • Sarko D, Beijer B, Garcia Boy R et al (2010) The pharmacokinetics of cell-penetrating peptides. Mol Pharm 7:2224–2231. https://doi.org/10.1021/mp100223d

    Article  CAS  PubMed  Google Scholar 

  • Sawant RM, Hurley JP, Salmaso S et al (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17:943–949

    Article  CAS  Google Scholar 

  • Teymouri M, Badiee A, Golmohammadzadeh S et al (2016) Tat peptide and hexadecylphosphocholine introduction into pegylated liposomal doxorubicin: an in vitro and in vivo study on drug cellular delivery, release, biodistribution and antitumor activity. Int J Pharm 511:236–244

    Article  CAS  Google Scholar 

  • Torchilin VP, Levchenko TS (2003) TAT-liposomes: a novel intracellular drug carrier. Curr Protein Pept Sci 4:133–140

    Article  CAS  Google Scholar 

  • Tripathi PP, Arami H, Banga I et al (2018) Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget 9:37252

    Article  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  Google Scholar 

  • Wilhelm S, Tavares AJ, Dai Q et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:16014

    Article  CAS  Google Scholar 

  • Zamani P, Navashenaq JG, Nikpoor AR et al (2019) MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer. J Control Release 303:223–236

    Article  CAS  Google Scholar 

  • Zamani P, Navashenaq JG, Teymouri M et al (2020) Combination therapy with liposomal doxorubicin and liposomal vaccine containing E75, an HER-2/neu-derived peptide, reduces myeloid-derived suppressor cells and improved tumor therapy. Life Sci 252:117646

    Article  CAS  Google Scholar 

  • Zhang L, Han L, Sun X et al (2012) The use of PEGylated liposomes to prolong the circulation lifetime of salvianolic acid B. Fitoterapia 83:678–689

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper has been extracted from Farjad Zarazvand thesis. The authors would like to acknowledge the financial support of University of Tehran and Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Reza Jaafari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarazvand, F., Karimi, M., Moosavian, S.A. et al. Efficacy Comparison of TAT Peptide-Functionalized PEGylated Liposomal Doxorubicin in C26 and B16F0 Tumor Mice Models. Int J Pept Res Ther 27, 2099–2109 (2021). https://doi.org/10.1007/s10989-021-10238-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-021-10238-4

Keywords

Navigation