Skip to main content

Advertisement

Log in

Design and Synthesis of a Novel Antimicrobial Peptide Targeting β-catenin in Human Breast Cancer Cell lines

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides which play a vital role in an innate immune defense mechanism of various organisms can be regarded as novel therapeutic agents for targeted therapy to cure cancer. In the present study, a novel antimicrobial peptide which has a prominent anticancer property was identified by investigating the binding efficiency of it with the target protein, β-catenin, and named as SKACP003. Further SKACP003 was synthesized chemically and its cytotoxic effect against the following breast cancer cell lines, namely, MCF-7, MDA-MB-231 and MDA-MB-453 were explored. It was observed that SKACP003 induced dose-dependent cytotoxicity in all the above mentioned cell lines. Moreover, by using the AO/EB, Hoechst, and JC1 staining procedures we recokned that the peptide SKACP003 brought out effective morphological changes, apoptosis, and mitochondrial membrane potential loss, respectively, on the three cell lines considered. In addition to that, there was a great extent of DNA damage noticed in the cell lines concerned with the aid of comet assay. Altogether, we conclude that the anticancer property of SKACP003 can be meticulously invoked, after further evaluations at the molecular level to design a new valiant drug, to cure breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bamodu OA, Huang WC, Tzeng DT, Wu A, Wang LS, Yeh CT, Chao TY (2015) Ovatodiolide sensitizes aggressive breast cancer cells to doxorubicin, eliminates their cancer stem cell-like phenotype, and reduces doxorubicin-associated toxicity. Cancer Lett 364(2):125–134

    Article  CAS  PubMed  Google Scholar 

  • Bourzac K (2012) Nanotechnology: carrying drugs. Nature 491(7425):S58

    Article  PubMed  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Coleman MP, Quaresma M, Berrino F, Lutz JM, De Angelis R, Capocaccia R, Micheli A (2008) Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol 9(8):730–756

    Article  PubMed  Google Scholar 

  • Dennison SR, Whittaker M, Harris F, Phoenix DA (2006) Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Peptide Sci 7(6):487–499

    Article  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafoor A, Jemal A, Ward E, Cokkinides V, Smith R, Thun M (2003) Trends in breast cancer by race and ethnicity. CA A Cancer J Clin 53(6):342–355

    Article  Google Scholar 

  • Graham TA, Ferkey DM, Mao F, Kimelman D, Xu W (2001) Tcf4 can specifically recognize β-catenin using alternative conformations. Nat Struct Mol Biol 8(12):1048

    Article  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Harris F, Dennison SR, Singh J, Phoenix DA (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33(1):190–234

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW (2011) Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Br Can Res 13(5):R102

    Article  CAS  Google Scholar 

  • Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Marsh JL, Waterman ML (2001) β-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 28(1):53

    CAS  PubMed  Google Scholar 

  • Huang YB, Wang XF, Wang HY, Liu Y, Chen Y (2011) Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Can Ther 10(3):416–426

    Article  CAS  Google Scholar 

  • Iijima M, Uhara H, Ide Y, Sakai S, Onuma H, Muto M, Hayashi K, Mitsura F, Kobayashi S, Yoshizawa A, Saida T (2006) Estrogen-receptor-alpha-positive extramammary Paget’s disease treated with hormonal therapy. Dermatology 213(2):144–146

    Article  CAS  PubMed  Google Scholar 

  • Kahn M (2014) Can we safely target the WNT pathway? Nat Rev Drug Discov 13(7):513–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Staining of suspension cells with Hoechst 33258 to detect apoptosis. CSH Protoc. https://doi.org/10.1101/pdb.prot4492

    Article  PubMed  Google Scholar 

  • Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH (2010) Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176(6):2911–2920

    Article  PubMed  PubMed Central  Google Scholar 

  • King TD, Suto MJ, Li Y (2012) The wnt/-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem 113(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Kirstetter P, Anderson K, Porse BT, Jacobsen SEW, Nerlov C (2006) Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 7(10):1048

    Article  CAS  PubMed  Google Scholar 

  • Koval A, Katanaev VL (2018) Dramatic dysbalancing of the Wnt pathway in breast cancers. Sci Rep 8(1):7329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar RS, Riyasdeen A, Dinesh M, Paul CP, Srinag S, Krishnamurthy H, Arunachalam S, Akbarsha MA (2011) Cytotoxic property of surfactant-cobalt (III) complexes on a human breast cancer cell line. Archiv Pharm 344(7):422–430

    Article  CAS  Google Scholar 

  • Kumar R, Verma V, Sarswat A, Maikhuri JP, Jain A, Jain RK, Gupta G (2012) Selective estrogen receptor modulators regulate stromal proliferation in human benign prostatic hyperplasia by multiple beneficial mechanisms—action of two new agents. Investig New Drugs 30(2):582–593

    Article  CAS  Google Scholar 

  • Lengacher CA, Reich RR, Paterson CL, Ramesar S, Park JY, Alinat C, Jacobsen PB (2016) Examination of broad symptom improvement resulting from mindfulness-based stress reduction in breast cancer survivors: a randomized controlled trial. J Clin Oncol 34(24):2827

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenz HJ, Kahn M (2014) Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci 105(9):1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KJ, Sung BH, Shin JR, Lee YW, Yang KS, Kim SC (2013) A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS ONE 8(6):e66084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Hung MC (2000) β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci 97(8):4262–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loganathan L, Muthusamy K (2018) Current scenario in structure and ligand-based drug design on anti-colon cancer drugs. Curr Pharm Des 24(32):3829–3841

    Article  CAS  PubMed  Google Scholar 

  • Loganathan L, Muthusamy K (2019) Investigation of drug interaction potentials and binding modes on direct renin inhibitors: a computational modeling studies. Lett Drug Des Dis 16(8):919–938

    Article  CAS  Google Scholar 

  • Mader JS, Honskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946

    Article  CAS  PubMed  Google Scholar 

  • Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2(3):201

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita KI, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, Magainin 2, with outer and inner membranes of gram negative bacteria. Biochim Biophys Acta (BBA) Bio Membr 1327(1):119–130

    Article  CAS  Google Scholar 

  • Morad SA, Levin JC, Tan SF, Fox TE, Feith DJ, Cabot MC (1831) (2013) Novel off-target effect of tamoxifen—inhibition of acid ceramidase activity in cancer cells. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 12:1657–1664

    Google Scholar 

  • Novkovic M, Simunic J, Bojovic V, Tossi A, Juretic D (2012) DADP: the database of anuran defense peptides. Bioinformatics 28(10):1406–1407

    Article  CAS  PubMed  Google Scholar 

  • Olive PL, Banáth JP (1995) Sizing highly fragmented DNA in individual apoptotic cells using the comet assay and a DNA crosslinking agent. Exp Cell Res 221(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Ikeda S, Ishizaki Y, Kurihara T, Tokumoto N, Iseki M, Arihiro K, Kataoka T, Okajima M, Asahara T (2005) Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncol Rep 14(6):1437–1443

    CAS  PubMed  Google Scholar 

  • Prosperi R, Goss H (2010) A Wnt-ow of opportunity: targeting the Wnt/β-catenin pathway in breast cancer. Curr Drug Targets 11(9):1074–1088

    Article  CAS  PubMed  Google Scholar 

  • Prosperi JR, Khramtsov AI, Khramtsova GF, Goss KH (2011) Apc mutation enhances PyMT-induced mammary tumorigenesis. PLoS ONE 6(12):e29339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PyMOL (2017). The PyMOL Molecular Graphics System, Version 2.0

  • Rahmani F, Tabrizi AT, Hashemian P, Alijannejad S, Rahdar HA, Ferns GA, Hassanian SM, Shahidsales S, Avan A (2020) Role of regulatory miRNAs of the Wnt/β-catenin signaling pathway in tumorigenesis of breast cancer. Gene 10:144892

    Article  CAS  Google Scholar 

  • Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochem 30(18):4480–4486

    Article  CAS  Google Scholar 

  • Release, S. (2017) 4: Maestro, Schr¨dinger, LLC, New York, NY, 2017. Schrödinger Inc.

  • Roberts MG (2016) Investigating the effects of nucleosome remodeling factor knockdown on anti-tumor immunity, M.Sc. Thesis, Virginia Commonwealth University, Richmond, VA

  • Schnitt SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Modern Pathol 23(S2):S60

    Article  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharm 625(1–3):190–194

    Article  CAS  Google Scholar 

  • Seifert, E. (2014). OriginPro 9.1: Scientific Data Analysis and Graphing Software, Software Review.

  • Selvam R, Subashchandran KP (2015) Synthesis of biologically active hydrophobic peptide by using novel polymer support: improved Fmoc solid phase methodology. Int J Pep Res Ther 21(1):91–97

    Article  CAS  Google Scholar 

  • Shi S, Chen X, Liu H, Yu K, Bao Y, Chai J, Gao H, Zou L (2019) LGR5 acts as a target of miR-340-5p in the suppression of cell progression and drug resistance in breast cancer via Wnt/β-catenin pathway. Gene 683:47–53

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  • Spector DL, Goldman RD, Leinwand LA (1998) Culture and biochemical analysis of cells. Cell 1: 34.1–34.9

  • van der Spoel D, van Maaren PJ, Caleman C (2012) GROMACS molecule and liquid database. Bioinformatics 28(5):752–753

    Article  PubMed  CAS  Google Scholar 

  • Trellet M, Melquiond AS, Bonvin AM (2013) A unified conformational selection and induced fit approach to protein-peptide docking. PLoS ONE 8(3):e58769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turashvili G, Bouchal J, Burkadze G, Kolar Z (2006) Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73(5):213–223

    Article  CAS  PubMed  Google Scholar 

  • Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS (2013) In silico models for designing and discovering novel anticancer peptides. Sci Rep 3:2984

    Article  PubMed  PubMed Central  Google Scholar 

  • Valenta T, Hausmann G, Basler K (2012) The many faces and functions of β-catenin. EMBO J 31(12):2714–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2015) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucl Acids Res 44(D1):D1094–D1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2015) APD3: The antimicrobial peptide database as a tool for research and education. Nucl Acids Res 44(D1):D1087–D1093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • World Health Organization (2016) WHO media centre: cancer. http://www.who.int/cancer/en/. Accessed on 26 Jun 2017

  • Yang L, Cui Y, Shen J, Lin F, Wang X, Long M, Zhang H (2015) Antitumor activity of SA12, a novel peptide, on SKBr-3 breast cancer cells via the mitochondrial apoptosis pathway. Drug Design Dev Ther 9:1319

    Google Scholar 

  • Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Fearon ER (2006) A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8(12):1398

    Article  CAS  PubMed  Google Scholar 

  • Yu QC, Verheyen EM, Zeng YA (2016) Mammary development and breast cancer: a Wnt perspective. Cancers 8(7):65

    Article  PubMed Central  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci 84(15):5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond AS, van Dijk M, De Vries SJ, Bonvin AMJJ (2016) The HADDOCK 2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the help received from Prof. R. Thirumurugan, Department of Animal Science, Bharathidasan University, Tiruchirapalli—620 024, India. Also the authors wish to acknowledge the support received from Dr. M. Karthikeyan and Mr. L. Lakshmanan, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, India in the form of docking studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanitha Selvarathinam.

Ethics declarations

Conflict of interest

The authors SK, TM, BB, and VR declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvarathinam, K., Thekkumalai, M., Perumalsamy, B. et al. Design and Synthesis of a Novel Antimicrobial Peptide Targeting β-catenin in Human Breast Cancer Cell lines. Int J Pept Res Ther 27, 1849–1860 (2021). https://doi.org/10.1007/s10989-021-10215-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-021-10215-x

Keywords

Navigation