Skip to main content

Advertisement

Log in

Analogues of Human Granulysin as Antimycobacterial Agents

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides are essential components of innate defense mechanisms and make promising candidates for novel anti-infective agents. The advantages of these peptides in clinical applications include their potential for broad-spectrum and rapid bactericidal activities, and low propensity for resistance development, whereas possible disadvantages include their high cost, limited stability, and unknown toxicology and pharmacokinetics. Granulysin (Gr) is a cytolytic and proinflammatory molecule expressed by activated human cytotoxic T lymphocytes and natural killer (NK) cells. This paper aims to study bacteriostatic and bactericidal activity against Mycobacterium tuberculosis by synthetic analogues of human Gr between 12 and 26 amino acids (AA) and their acyl derivatives. Considering results of previous studies, five new peptides were designed: a cyclic of 20 AA (Gr-SL1); one of 21 AA (linear) (Gr-SL2), another of 12 AA (cyclic) (Gr-SL3) and two lipopeptides (Gr-SL3-lauric and Gr-SL3-palmitic). Peptides were manually synthesized as C-terminal carboxamides by the solid-phase method following Fmoc chemistry. Gr synthetic analogues were purified by reverse phase HPLC and analyzed by analytical C18RP-HPLC and Maldi Tof. The antimycobacterial activity of synthesized Gr analogues was assessed using a microdilution susceptibility test as described previously. Although peptides studied here had neither higher antimycobacterial activity nor lower toxicity than analogs of human Gr previously evaluated, fresh knowledge concerning the influence of acylation and structural aspects analyzed will optimize the design of novel peptides combining the most favorable aspects for the maintenance of antimycobacterial activity with minimum toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almeida PF, Pokomy A (2009) Mechanisms of antimicrobial, cytolytic and self-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48(34):8083–8093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreu D, Carren C, Linde C, Boman H, Andersson M (1999) Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem J 344:845–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avrahami D, Shay Y (2004) A new group of antifungal and antibacterial lipopeptides derive from non-membrane active peptides conjugated to palmitic acid. J Biol Chem 279(13):12277–12285

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC et al (2005) De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother 49:316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Lazaridis T (2013) Activity determinants of helical antimicrobial peptides: a large-scale computational study. PLoS ONE 8(6):e66440. https://doi.org/10.1371/journal.pone.0066440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JF, Xu YM, Hao DM, Huang YB, Liu Y, Chen YX (2010) Structure-guided de novo design of alpha-helical antimicrobial peptide with enhanced specificity. Pure Appl Chem 82:243–257

    Article  CAS  Google Scholar 

  • Jerala R (2007) Synthetic lipopeptides: a novel class of antiinfectives. Expert Opin Investig Drugs 16:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Jindal HM, Le CF, Yusof MY, Velayuthan RD, Lee VS, Zain S, Isa DM, Sekaran SD (2015) Antimicrobial activity of novel synthetic peptides derived from Indolicidin and Ranalexin against Streptococcus pneumoniae. PLoS ONE 10(6):e0128532. https://doi.org/10.1371/journal.pone.0128532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krensky AM, Clayberger C (2009) Biology and clinical relevance of granulysin. Tissue Antigens 73(3):193–198. https://doi.org/10.1111/j.1399-0039.2008.01218.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite C, Beretta A, Anno I, Telles M (2000) Standartization of broth microdilution method for mycobacterium tuberculosis. Memórias do Instituto Oswaldo Cruz 95(1):127–129

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Dong C, Deng A, Katsumata M, Nakadai A, Kawada T, Okada S, Clayberger C, Krensky A (2005) Hemolysis of erythrocytes by granulysin-derived peptides but not by granulysin. Antimicrob Agents Chemother 49(1):388–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linde C, Hoffner S, Refai E, Andersson M (2001) In vitro activity of PR-39, a proline-arginine-rich peptide against susceptible and multi-drug-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 47:575–580

    Article  CAS  PubMed  Google Scholar 

  • Lockwood N, Haseman J, Tirrell M, Mayo K (2004) Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains. Biochem J 378:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. PNAS 103(43):15997–16002

    Article  CAS  Google Scholar 

  • Malina A, Shai Y (2005) Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J 390:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmsten M (2014) Antimicrobial peptides. Upsala J Med Sci 119:199–204

    Article  PubMed  Google Scholar 

  • Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6(5):468–472

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Driessen N, Appelmelk B, Besra G (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction. FEMS Microbiol Rev 35(6):1126–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney C, Haslam N, Pollastri G, Shields D (2012) Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 7(10):e45012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl HG (2004) In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J Antimicrob Chemother 53:230–239

    Article  CAS  PubMed  Google Scholar 

  • Ringstad L, Schmidtchen A, Malmsten M (2006) Effect of peptide length on the interaction between consensus peptides and DOPC/DOPA bilayers. Langmuir 22:5042–5050

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez A, Villegas E, Montoya-Rosales A, Rivas-Santiago B, Corzo G (2014) Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against mycobacterium tuberculosis. PLoS ONE 9(7):e101742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Gómez S, Ferrer-Espada R, Stewart P, Pitts B, Lohner K, Martínez de Tejada G (2015) Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol 15:137. https://doi.org/10.1186/s12866-015-0473-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Siano A, Tonarelli G, Imaz MS, Perín JC, Ruggeri N, López M, Santi MN, Zerbini E (2010) Bactericidal and hemolytic activities of synthetic peptides derived from granulysin. Prot Pept Lett 17:517–521

    Article  CAS  Google Scholar 

  • Silva T, Magalhães B, Maia S, Gomes P, Nazmi K, Bolscher J, Rodrigues P, Bastos M, Gomes MS (2014) Killing of mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob Agents Chemother 58(6):3461–3467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282(5386):121–125

    Article  CAS  PubMed  Google Scholar 

  • Tan T, Wu D, Li W, Zheng X, Li W, Shan A (2017) High specific selectivity and membrane-active mechanism of synthetic cationic hybrid antimicrobial peptides based on the peptide FV7. Int J Mol Sci 18:339. https://doi.org/10.3390/ijms18020339

    Article  CAS  PubMed Central  Google Scholar 

  • Wang P, Bang JK, Kim HJ, Kim JK, Kim Y, Shin SY (2009) Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides 30:2144–2149

    Article  CAS  PubMed  Google Scholar 

  • WHO (2012) The evolving threat of antimicrobial resistance: options for action. World Health Organization, Geneva

    Google Scholar 

  • Yang M, Zhang C, Zhang X, Zhang MZ, Rottinghaus GE, Zhang S (2016) Structure-function analysis of Avian beta-defensin-6 and beta-defensin-12: role of charge and disulfide bridges. BMC Microbiol 16(1):210. https://doi.org/10.1186/s12866-016-0828

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wu H, Lu H, Li G, Huang Q (2013) LAMP: a database linking antimicrobial peptides. PLoS ONE 8(6):e66557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitvogel L, Kroemer G (2010) The multifaceted granulysin. Blood 116(18):3379–3380. https://doi.org/10.1182/blood-2010-08-299214

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Universidad Nacional del Litoral (CAI+D) and Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (FOCANLIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Zerbini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siano, A., Tonarelli, G., Larpin, D. et al. Analogues of Human Granulysin as Antimycobacterial Agents. Int J Pept Res Ther 25, 691–696 (2019). https://doi.org/10.1007/s10989-018-9715-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9715-8

Keywords

Navigation