Skip to main content
Log in

Continuous-time dichotomies without unstable invariant manifolds for autonomous system

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

It is known that a differential equation (t) = Ax(t) on the Banach space X (we assume the well-posedness, i.e., A generates a C0-semigroup {T(t)}t ≥ 0) is hyperbolic if X can be decomposed as X = X1X2 so that solutions (∙) starting from X1 (respectively, from X2) decay exponentially in forward time (respectively, in backward time). Hyperbolicity forces the solutions that start from X2 to exist for negative time (or, equivalently, the semigroup generated by A to extend to a C0-group on X2). We generalize this notion by replacing the exponential decay in negative time for the solutions starting in X2 with an exponential blow-up in positive time (we call this an exponential dichotomy). It is obvious that hyperbolicity implies the existence of an exponential dichotomy, but the converse is not valid (we point out an example in this context). We obtain a unified treatment of admissibility-type conditions guaranteeing the existence of an exponential dichotomy and complete characterizations of the hyperbolicity of autonomous differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Coppel, Dichotomies in Stability Theory, Lect. Notes Math., Vol. 629, Springer, New York, 1978.

  2. J.L. Daleckij and M.G. Krein, Stability of Solutions of Differential Equations in Banach spaces, Transl. Math. Monogr., Vol. 43, AMS, Providence, RI, 1974.

  3. M.S. Elbialy, Locally Lipschitz perturbations of bi-semigroups, Commun. Pure Appl. Anal., 9(2):327–349, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.S. Elbialy, Stable and unstable manifolds for hyperbolic bi-semigroups, J. Funct. Anal., 262(5):2516–2560, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.A. Kaashoek and S.M. Verduyn Lunel, An integrability condition on the resolvent for hyperbolicity of the semigroup, J. Differ. Equations, 112(2):374–406, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds, Discrete Contin. Dyn. Syst., 5(2):233–268, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Latushkin and A. Pogan, The dichotomy theorem for evolution bi-families, J. Differ. Equations, 245(8):2267–2306, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Latushkin, A. Pogan, and R. Schnaubelt, Dichotomies and Fredholm properties of evolution equations, J. Oper. Theory, 58(2):387–414, 2007.

    MATH  Google Scholar 

  9. T. Li, Die Stabilitätsfrage bei Differenzengleichungen, Acta Math., 63:99–141, 1934.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.L. Massera and J.J. Schäffer, Linear differential equations and functional analysis. I, Ann.Math. (2), 67(3):517–573, 1958.

  11. J.L. Massera and J.J. Schäffer, Linear Differential Equations and Function Spaces, Academic Press, New York, 1966.

    MATH  Google Scholar 

  12. R.O. Moşincat, C. Preda, and P. Preda, Dichotomies with no invariant unstable manifolds for autonomous equations, J. Funct. Spaces Appl., 2012:527647, 2012, available from: https://doi.org/10.1155/2012/527647.

  13. N. van Minh, F. Räbiger, and R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half-line, Integral Equations Oper. Theory, 32(3):332–353, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.M.A.M. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory: Adv. Appl., Vol. 88, Birkhäuser, Basel, 1996.

  15. J.M.A.M van Neerven, Characterizations of exponential stability of a semigroup of operators in terms of its action by convolution on vector-valued function spaces over ℝ+, J. Differ. Equations, 124(2):324–342, 1996.

  16. A. Pazy, Semigroups of operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.

    Book  MATH  Google Scholar 

  17. O. Perron, Die Stabilitätsfrage bei Differentialgeighungen, Math. Z., 32:703–728, 1930.

    Article  MathSciNet  MATH  Google Scholar 

  18. V.Q. Phóng, On the exponential stability and dichotomy of C 0-semigroups, Stud. Math., 132(2):141–149, 1999.

    Article  MATH  Google Scholar 

  19. C. Preda and P. Preda, On the asymptotic behavior of the solutions of autonomous equations without unstable invariant manifolds, Comput. Math. Appl., 64(1):35–47, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Preda, P. Preda, and A. Craciunescu, Criterions for detecting the existence of the exponential dichotomies in the asymptotic behavior of the solutions of variational equations, J. Funct. Anal., 258(3):729–757, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Preda, A. Pogan, and C. Preda, On the Perron problem for the exponential dichotomy of C 0-semigroups, Acta Math. Univ. Comen., New Ser., 72(2):207–212, 2003.

  22. P. Preda, A. Pogan, and C. Preda, (L p , L q)-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equations Oper. Theory, 49(3):405–418, 2004.

  23. P. Preda, A. Pogan, and C. Preda, Schäffer spaces and uniform exponential stability of linear skew-product semiflows, J. Differ. Equations, 212(1):191–207, 2005.

    Article  MATH  Google Scholar 

  24. P. Preda, A. Pogan, and C. Preda, Schäffer spaces and exponential dichotomy for evolutionary processes, J. Differ. Equations, 230(1):378–391, 2006.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian Preda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preda, C., Bǎtǎran, F. Continuous-time dichotomies without unstable invariant manifolds for autonomous system. Lith Math J 58, 167–184 (2018). https://doi.org/10.1007/s10986-018-9388-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-018-9388-1

MSC

Keywords

Navigation