Skip to main content
Log in

Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the equation dy(t)/dt = (A + B(t))y(t) (t ≽ 0), where A is the generator of an analytic semigroup (eAt)t≽0 on a Banach space χ, B(t) is a variable bounded operator in χ. It is assumed that the commutator K(t) = AB(t) − B(t)A has the following property: there is a linear operator S having a bounded left-inverse operator \(S_l^{ - 1}\) such that ∥SeAt∥ is integrable and the operator \(K\left( t \right)S_l^{ - 1}\) is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alabau, P. Cannarsa, V. Komornik: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2 (2002), 127–150.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Andrica, T. M. Rassias (eds.): Differential and Integral Inequalities. Springer Optimization and Its Applications 151. Springer, Cham, 2019.

    MATH  Google Scholar 

  3. C. Chicone, Y. Latushkin: Evolution Semigrous in Dynamical Systems and Differential Equations. Mathematical Survey and Monographs 70. AMS, Providence, 1999.

    Book  MATH  Google Scholar 

  4. A. Cialdea, F. Lanzara: Stability of solutions of evolution equations. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 24 (2013), 451–469.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. F. Curtain, J. C. Oostveen: Necessary and sufficient conditions for strong stability of distributed parameter systems. Syst. Control Lett. 37 (1999), 11–18.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. L. Daleckii, M. G. Krein: Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs 43. AMS, Providence, 1974.

    Google Scholar 

  7. V. Dragan, T. Morozan: Criteria for exponential stability of linear differential equations with positive evolution on ordered Banach spaces. IMA J. Math. Control Inf. 27 (2010), 267–307.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Fourrier, I. Lasiecka: Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evol. Equ. Control Theory 2 (2013), 631–667.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Gil’: Integrally small perturbations of semigroups and stability of partial differential equations. Int. J. Partial Differ. Equ. 2013 (2013), Article ID 207581, 5 pages.

    MATH  Google Scholar 

  10. M. I. Gil’: Operator Functions and Operator Equations. World Scientific, Hackensack, 2018.

    MATH  Google Scholar 

  11. M. I. Gil’: Stability of evolution equations with small commutators in a Banach space. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29 (2018), 589–596.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. I. Gil’: Stability of linear equations with differentiable operators in a Hilbert space. IMA J. Math. Control Inf. 37 (2020), 19–26.

    MathSciNet  MATH  Google Scholar 

  13. D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lectures Notes in Mathematics 840. Springer, Berlin, 1981.

    MATH  Google Scholar 

  14. S. G. Krein: Linear Differential Equations in Banach Space. Translations of Mathematical Monographs 29. AMS, Providence, 1972.

    Google Scholar 

  15. H. Laasri, O. El-Mennaoui: Stability for non-autonomous linear evolution equations with Lp-maximal regularity. Czech. Math. J. 63 (2013), 887–908.

    Article  MATH  Google Scholar 

  16. S. Nicaise: Convergence and stability analyses of hierarchic models of dissipative second order evolution equations. Collect. Math. 68 (2017), 433–462.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Oostveen: Strongly Stabilizable Distributed Parameter Systems. Frontiers in Applied Mathematics 20. SIAM, Philadelphia, 2000.

    Book  MATH  Google Scholar 

  18. P. Pucci, J. Serrin: Asymptotic stability for nonautonomous dissipative wave systems. Commun. Pure Appl. Math. 49 (1996), 177–216.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am very grateful to the reviewer of this paper for really deep and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gil’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil’, M. Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space. Czech Math J 73, 355–366 (2023). https://doi.org/10.21136/CMJ.2023.0188-21

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2023.0188-21

Keywords

MSC 2020

Navigation