Skip to main content

Advertisement

Log in

A dependent Dirichlet process model for survival data with competing risks

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In this paper, we first propose a dependent Dirichlet process (DDP) model using a mixture of Weibull models with each mixture component resembling a Cox model for survival data. We then build a Dirichlet process mixture model for competing risks data without regression covariates. Next we extend this model to a DDP model for competing risks regression data by using a multiplicative covariate effect on subdistribution hazards in the mixture components. Though built on proportional hazards (or subdistribution hazards) models, the proposed nonparametric Bayesian regression models do not require the assumption of constant hazard (or subdistribution hazard) ratio. An external time-dependent covariate is also considered in the survival model. After describing the model, we discuss how both cause-specific and subdistribution hazard ratios can be estimated from the same nonparametric Bayesian model for competing risks regression. For use with the regression models proposed, we introduce an omnibus prior that is suitable when little external information is available about covariate effects. Finally we compare the models’ performance with existing methods through simulations. We also illustrate the proposed competing risks regression model with data from a breast cancer study. An R package “DPWeibull” implementing all of the proposed methods is available at CRAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allison P (2018) For causal analysis of competing risks, don’t use fine and Gray’s subdistribution method. https://statisticalhorizons.com/for-causal-analysis-of-competing-risks, statistical Horizons

  • Chen DGD, Sun J, Peace KE (2012) Interval-censored time-to-event data: methods and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B 34(2):187–220

    MathSciNet  MATH  Google Scholar 

  • de Castro M, Chen M, Zhang Y (2015) Bayesian path specific frailty models for multi-state survival data with applications. Biometrics 71(3):760–771

    Article  MathSciNet  Google Scholar 

  • De Iorio M, Müller P, Rosner GL, MacEachern SN (2004) An ANOVA model for dependent random measures. J Am Stat Assoc 99(465):205–215

    Article  MathSciNet  Google Scholar 

  • De Iorio M, Johnson WO, Müller P, Rosner GL (2009) Bayesian nonparametric nonproportional hazards survival modeling. Biometrics 65(3):762–771

    Article  MathSciNet  Google Scholar 

  • Dignam JJ, Zhang Q, Kocherginsky M (2012) The use and interpretation of competing risks regression models. Clin Cancer Res Off J Am Assoc Cancer Res 18(8):2301–2308. https://doi.org/10.1158/1078-0432.CCR-11-2097

    Article  Google Scholar 

  • Escobar MD, West M (1995) Bayesian density estimation and inference using mixtures. J Am Stat Assoc 90(430):577–588

    Article  MathSciNet  Google Scholar 

  • Fan X (2008) Bayesian nonparametric inference for competing risks data. The Medical College of Wisconsin, Ph.D. dissertation

  • Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509

    Article  MathSciNet  Google Scholar 

  • Ge M, Chen MH (2012) Bayesian inference of the fully specified subdistribution model for survival data with competing risks. Lifetime Data Anal 18(3):339–363

    Article  MathSciNet  Google Scholar 

  • Gelman A, Jakulin A, Pittau MG, Su YS (2008) A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2(4):1360–1383

    Article  MathSciNet  Google Scholar 

  • Greep NC, Giuliano AE, Hansen NM, Taketani T, Wang HJ, Singer FR (2003) The effects of adjuvant chemotherapy on bone density in postmenopausal women with early breast cancer. Am J Med 114(8):653–659

    Article  Google Scholar 

  • Ishwaran H, Kogalur U (2018) Random forests for survival, regression, and classification (RF-SRC)

  • Klabunde CN, Legler JM, Warren JL, Baldwin LM, Schrag D (2007) A refined comorbidity measurement algorithm for claims-based studies of breast, prostate, colorectal, and lung cancer patients. Ann Epidemiol 17(8):584–590

    Article  Google Scholar 

  • Kottas A (2006) Nonparametric Bayesian survival analysis using mixtures of Weibull distributions. J Stat Plan Inference 136(3):578–596

    Article  MathSciNet  Google Scholar 

  • Lee KH, Dominici F, Schrag D, Haneuse S (2016) Hierarchical models for semicompeting risks data with application to quality of end-of-life care for pancreatic cancer. J Am Stat Assoc 111(515):1075–1095

    Article  MathSciNet  Google Scholar 

  • MacEachern SN (1999) Dependent nonparametric processes. In: ASA proceedings of the section on Bayesian statistical science, pp 50–55

  • Murthy VH, Krumholz HM, Gross CP (2004) Participation in cancer clinical trials: race-, sex-, and age-based disparities. J Am Med Assoc 291(22):2720–2726

    Article  Google Scholar 

  • Naskar M, Das K, Ibrahim JG (2005) A semiparametric mixture model for analyzing clustered competing risks data. Biometrics 61(3):729–737

    Article  MathSciNet  Google Scholar 

  • Neal RM (2000) Markov chain sampling methods for Dirichlet process mixture models. J Comput Graph Stat 9(2):249–265

    MathSciNet  Google Scholar 

  • Neuner JM, Shi Y, Kong AL, Kamaraju S, Smith EC, Smallwood AJ, Laud PW, Charlson JA (2018) Fractures in a nationwide population-based cohort of users of breast cancer hormonal therapy. J Cancer Surviv 12(2):268–275. https://doi.org/10.1007/s11764-017-0666-4

    Article  Google Scholar 

  • Scrucca L, Santucci A, Aversa F (2007) Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transpl 40(4):381–387

    Article  Google Scholar 

  • Sethuraman J (1994) A constructive definition of Dirichlet priors. Stat Sin 4:639–650

    MathSciNet  MATH  Google Scholar 

  • Shi Y (2019) DPWeibull: Dirichlet process Weibull mixture model for survival data. https://CRAN.R-project.org/package=DPWeibull, r package version 1.4

  • Shi Y, Martens M, Banerjee A, Laud P (2019) Low information omnibus (lio) priors for dirichlet process mixture models. Bayesian Anal 14(3):677–702. https://doi.org/10.1214/18-BA1119

    Article  MathSciNet  MATH  Google Scholar 

  • Snapinn SM, Jiang Q, Iglewicz B (2012) Illustrating the impact of a time-varying covariate with an extended Kaplan–Meier estimator. Am Stat 59(4):301–307

    Article  MathSciNet  Google Scholar 

  • Sparapani RA, Logan BR, McCulloch RE, Laud PW (2016) Nonparametric survival analysis using Bayesian additive regression trees (BART). Stat Med 35(16):2741–2753

    Article  MathSciNet  Google Scholar 

  • Therneau TM (2015) A package for survival analysis in S. https://CRAN.R-project.org/package=survival, version 2.38

  • Zhang Y, Chen MH, Ibrahim JG, Zeng D, Chen Q, Pan Z, Xue X (2014) Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching. Lifetime Data Anal 20(1):76–105

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The study was funded by the American Cancer Society (RSG-11-098-01-CPHPS to JMN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushu Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2544 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Laud, P. & Neuner, J. A dependent Dirichlet process model for survival data with competing risks. Lifetime Data Anal 27, 156–176 (2021). https://doi.org/10.1007/s10985-020-09506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-020-09506-0

Keywords

Navigation