Skip to main content
Log in

Extensions of the absolute standardized hazard ratio and connections with measures of explained variation and variable importance

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

The absolute standardized hazard ratio (ASHR) is a scale-invariant scalar measure of the strength of association of a vector of covariates with the risk of an event. It is derived from proportional hazards regression. The ASHR is useful for making comparisons among different sets of covariates. Extensions of the ASHR concept and practical considerations regarding its computation are discussed. These include a new method to conduct preliminary checks for collinearity among covariates, a partial ASHR to evaluate the association with event risk of some of the covariates conditioning on others, and the ASHR for interactions. To put the ASHR in context, its relationship to measures of explained variation and other measures of separation of risk is discussed. A new measure of the contribution of each covariate to the risk score variance is proposed. This measure, which is derived from the ASHR calculations, is interpretable as variable importance within the context of the multivariable model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aalen OO, Cook RJ, Røysland K (2015) Does Cox analysis of a randomized survival study yield a causal treatment effect? Lifetime Data Anal 21:579–593

    Article  MathSciNet  Google Scholar 

  • Austin PC (2012) The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med 32:2837–2849

    Article  MathSciNet  Google Scholar 

  • Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics. Wiley, New York

    Book  Google Scholar 

  • Bring J (1995) Variable importance by partitioning R2. Qual Quant 29:173–189

    Article  Google Scholar 

  • Choodari-Oskooei B, Royston P, Parmar MKB (2012) A simulation study of predictive ability measures in a survival model I: explained variation measures. Stat Med 31:2627–2643

    Article  MathSciNet  Google Scholar 

  • Concato J, Peduzzi P, Holford TR, Feinstein AR (1995) Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol 48:1495–1501

    Article  Google Scholar 

  • Cox DR (1972) Regression models and life tables. J R Stat Soc B 34:187–220 (with discussion)

    MathSciNet  MATH  Google Scholar 

  • Crager MR (2012) Generalizing the standardized hazard ratio to multivariate proportional hazards regression, with an application to clinical genomic studies. J Appl Stat 39:399–417

    Article  MathSciNet  Google Scholar 

  • Grömping U (2007) Estimators of relative importance in linear regression based on variance decomposition. Am Stat 61:139–147

    Article  MathSciNet  Google Scholar 

  • Hernán MA (2010) The hazards of hazard ratios. Epidemiology 21:13–15

    Article  Google Scholar 

  • Kent J, O’Quigley J (1988) Measures of dependence for censored survival data. Biometrika 75:525–534

    Article  MathSciNet  Google Scholar 

  • Martinussen T, Vansteelandt S, Andersen PK (2018) Subtleties in the interpretation of hazard ratios. arXiv:1810.09192

  • Nathans LL, Oswald FL, Nimon K (2012) Interpreting multiple linear regression: a guidebook of variable importance. Pract Assess Res Eval 17:1–19

    Google Scholar 

  • Peduzzi P, Concato J, Feinstein AR, Holford TR (1995) Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol 48:1503–1510

    Article  Google Scholar 

  • Rini B, Goddard A, Knezevic D, Maddala T, Zhou M, Ayden H et al (2015) A 16-gene assay to predict recurrence after surgery in localized renal cell carcinoma: development and validation studies. Lancet Oncol 16:676–685

    Article  Google Scholar 

  • Royston P, Sauerbrei W (2004) A new measure of prognostic separation in survival data. Stat Med 23:723–748

    Article  Google Scholar 

  • Schemper M (1993) The relative importance of prognostic factors in studies of survival. Stat Med 12:2377–2382

    Article  Google Scholar 

  • Schemper M, Henderson R (2000) Predictive accuracy and explained variation in Cox regression. Biometrics 56:249–255

    Article  Google Scholar 

  • Weissfeld LA (1989) A multicollinearity diagnostic for models fit to censored data. Commun Stat 18:2017–2028

    Article  MathSciNet  Google Scholar 

  • Welchowski T, Zuber V, Schmid M (2019) Correlation-adjusted regression survival scores for high-dimensional variable selection. Stat Med 38:2413–2427

    Article  MathSciNet  Google Scholar 

  • Zuber V, Strimmer K (2011) High-dimensional regression and variable selection using CAR scores. Stat Appl Genet Mol Biol 10(1), Article 34

Download references

Acknowledgements

The author wishes to thank Dr. Brian Rini, the Cleveland Clinic Foundation, Dr. Bernard Escudier and Institut Gustave Roussy for the data used in the example and two anonymous peer reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Crager.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of the standard error of the proportional contributions to the risk score variance

Appendix: Derivation of the standard error of the proportional contributions to the risk score variance

Let \( \hat{\delta }_{k} \) and \( \hat{\pi }_{k} \) be the kth elements of \( \widehat{{\varvec{\updelta}}} = \text{diag} \left( {{\varvec{\Sigma}}_{z}^{1/2} \widehat{{\varvec{\upbeta}}}\widehat{{\varvec{\upbeta}}}^{T} {\varvec{\Sigma}}_{z}^{1/2} } \right) \) and \( \widehat{{\varvec{\uppi}}} = {{\widehat{{\varvec{\updelta}}}} \mathord{\left/ {\vphantom {{\widehat{{\varvec{\updelta}}}} {\hat{B}_{\sigma }^{2} }}} \right. \kern-0pt} {\hat{B}_{\sigma }^{2} }}, \) where \( 1 \le k \le p. \) Since \( \hat{B}_{\sigma }^{2} = \sum\nolimits_{i = 1}^{p} {\sum\nolimits_{j = 1}^{p} {\hat{\beta }_{i} } } \hat{\beta }_{j} \sigma_{ij} , \) where \( \sigma_{ij} \) denotes the element in row \( i \) and column \( j \) of \( {\varvec{\Sigma}}_{{\mathbf{z}}} , \) the partial derivative of \( \hat{B}_{\sigma }^{2} \) with respect to \( \hat{\beta }_{l} ,1 \le l \le p, \) is \( {{\partial \left( {\hat{B}_{\sigma }^{2} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {\hat{B}_{\sigma }^{2} } \right)} {\partial \hat{\beta }_{l} }}} \right. \kern-0pt} {\partial \hat{\beta }_{l} }} = 2\sum\nolimits_{i = 1}^{m} {\sigma_{li} \hat{\beta }_{i} } . \) The partial derivative of \( \widehat{{\varvec{\upbeta}}}\widehat{{\varvec{\upbeta}}}^{T} \) with respect to \( \hat{\beta }_{l} \) is

$$ \frac{\partial }{{\partial \hat{\beta }_{l} }}\left[ {\begin{array}{*{20}c} {\hat{\beta }_{1} \hat{\beta }_{1} } & {\hat{\beta }_{1} \hat{\beta }_{2} } & \cdots & {\hat{\beta }_{1} \hat{\beta }_{p} } \\ {\hat{\beta }_{2} \hat{\beta }_{1} } & {\hat{\beta }_{2} \hat{\beta }_{2} } & \cdots & {\hat{\beta }_{2} \hat{\beta }_{p} } \\ \vdots & \vdots & \vdots & \vdots \\ {\hat{\beta }_{p} \hat{\beta }_{1} } & {\hat{\beta }_{p} \hat{\beta }_{2} } & \cdots & {\hat{\beta }_{p} \hat{\beta }_{p} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & \cdots & 0 & {\hat{\beta }_{1} } & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & {\hat{\beta }_{l - 1} } & 0 & \cdots & 0 \\ {\hat{\beta }_{1} } & \cdots & {\hat{\beta }_{l - 1} } & {2\hat{\beta }_{l} } & {\hat{\beta }_{l + 1} } & \cdots & {\hat{\beta }_{p} } \\ 0 & \cdots & 0 & {\hat{\beta }_{l + 1} } & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & {\hat{\beta }_{p} } & 0 & \cdots & 0 \\ \end{array} } \right] $$

The partial derivative of \( \hat{\pi }_{k} \) with respect to \( \hat{\beta }_{l} \) is thus

$$ \frac{{\partial \hat{\pi }_{k} }}{{\partial \hat{\beta }_{l} }} = \frac{{diag_{k} \left( {{\varvec{\Sigma}}_{z}^{1/2} {\mathbf{D}}_{l} {\varvec{\Sigma}}_{z}^{1/2} } \right)}}{{\hat{B}_{\sigma }^{2} }} - \frac{{2\hat{\pi }_{k} }}{{\hat{B}_{\sigma }^{2} }}\sum\limits_{i = 1}^{p} {\sigma_{li} \hat{\beta }_{i} } . $$

where \( diag_{k} \) denotes the kth element of the diagonal, and \( {\mathbf{D}}_{l} \) is an \( p \times p \) matrix with element \( d_{ij}^{(l)} = I_{{\left\{ {i = l} \right\}}} \hat{\beta }_{j} + I_{{\left\{ {j = l} \right\}}} \hat{\beta }_{i} \) in row \( i \) and column \( j. \) Using the delta method, the standard error of \( \hat{\pi }_{k} \) is consistently estimated by

$$ \widehat{SE}\left\{ {\hat{\pi }_{k} } \right\} = \sqrt {\left( {\nabla_{{{\hat{\varvec{\upbeta }}}}} \hat{\pi }_{k} } \right)^{T} {\hat{\mathbf{V}}}\left( {\nabla_{{{\hat{\varvec{\upbeta }}}}} \hat{\pi }_{k} } \right)} ,$$

where \( \nabla_{{\hat{{\varvec{\upbeta}}}}} = \left( {{\partial \mathord{\left/ {\vphantom {\partial {\partial \hat{\beta }_{1} ,{\partial \mathord{\left/ {\vphantom {\partial {\partial \hat{\beta }_{2} ,}}} \right. \kern-0pt} {\partial \hat{\beta }_{2} ,}} \ldots ,{\partial \mathord{\left/ {\vphantom {\partial {\partial \hat{\beta }_{p} }}} \right. \kern-0pt} {\partial \hat{\beta }_{p} }}}}} \right. \kern-0pt} {\partial \hat{\beta }_{1} ,{\partial \mathord{\left/ {\vphantom {\partial {\partial \hat{\beta }_{2} ,}}} \right. \kern-0pt} {\partial \hat{\beta }_{2} ,}} \ldots ,{\partial \mathord{\left/ {\vphantom {\partial {\partial \hat{\beta }_{p} }}} \right. \kern-0pt} {\partial \hat{\beta }_{p} }}}}} \right)^{T} \) is the gradient operator.

The partial derivative results can be written in the form of a Jacobian

$$ \nabla_{{\widehat{{\varvec{\upbeta}}}}} \widehat{{\varvec{\uppi}}} = \left( {{{\partial \widehat{{\varvec{\uppi}}}} \mathord{\left/ {\vphantom {{\partial \widehat{{\varvec{\uppi}}}} {\partial \hat{\beta }_{1} ,{{\partial \widehat{{\varvec{\uppi}}}} \mathord{\left/ {\vphantom {{\partial \widehat{{\varvec{\uppi}}}} {\partial \hat{\beta }_{2} ,}}} \right. \kern-0pt} {\partial \hat{\beta }_{2} ,}} \ldots ,{{\partial \widehat{{\varvec{\uppi}}}} \mathord{\left/ {\vphantom {{\partial \widehat{{\varvec{\uppi}}}} {\partial \hat{\beta }_{p} }}} \right. \kern-0pt} {\partial \hat{\beta }_{p} }}}}} \right. \kern-0pt} {\partial \hat{\beta }_{1} ,{{\partial \widehat{{\varvec{\uppi}}}} \mathord{\left/ {\vphantom {{\partial \widehat{{\varvec{\uppi}}}} {\partial \hat{\beta }_{2} ,}}} \right. \kern-0pt} {\partial \hat{\beta }_{2} ,}} \ldots ,{{\partial \widehat{{\varvec{\uppi}}}} \mathord{\left/ {\vphantom {{\partial \widehat{{\varvec{\uppi}}}} {\partial \hat{\beta }_{p} }}} \right. \kern-0pt} {\partial \hat{\beta }_{p} }}}}} \right)^{T} , $$

where

$$ \frac{{\partial \widehat{{\varvec{\uppi}}}}}{{\partial \hat{\beta }_{l} }} = \frac{1}{{\hat{B}_{\sigma }^{2} }}\left\{ {diag\left( {{\varvec{\Sigma}}_{z}^{1/2} {\mathbf{D}}_{l} {\varvec{\Sigma}}_{z}^{1/2} } \right) - 2\widehat{{\varvec{\uppi}}}\left( {{\varvec{\Sigma}}_{z} \widehat{{\varvec{\upbeta}}}} \right)_{l} } \right\}, $$

and \( {\mathbf{x}}_{l} \) denotes element \( l \) of the vector \( {\mathbf{x}}. \) For any subset \( S \subset \left\{ {1,2, \ldots ,p} \right\} \) of the covariates, \( \nabla_{{{\hat{\varvec{\upbeta }}}}} \left( {\sum\nolimits_{k \in S} {\hat{\pi }_{k} } } \right) = \sum\nolimits_{k \in S} {\nabla_{{{\hat{\varvec{\upbeta }}}}} \hat{\pi }_{k} } , \) so the standard deviation of the estimator of the proportional contribution of the subset of variables is

$$ \widehat{SE}\left( {\sum\nolimits_{k \in S} {\hat{\pi }_{k} } } \right) = \sqrt {\left( {\sum\nolimits_{k \in S} {\nabla_{{{\hat{\varvec{\upbeta }}}}} \hat{\pi }_{k} } } \right)^{T} {\hat{\mathbf{V}}}\left( {\sum\nolimits_{k \in S} {\hat{\pi }_{k} \nabla_{{{\hat{\varvec{\upbeta }}}}} \hat{\pi }_{k} } } \right)} . $$

Let \( {\mathbf{I}}_{S} = \left( {I_{{\{ 1 \in S\} }} ,I_{{\{ 1 \in S\} }} \ldots ,I_{{\{ m \in S\} }} } \right)^{T} \) be a vector of indicator functions for membership of each variable in the subset. Then we can write

$$ \widehat{SE}\left( {{\mathbf{I}}_{S}^{T} \widehat{{\varvec{\uppi}}}} \right) = \sqrt {\left( {\nabla_{{\widehat{{\varvec{\upbeta}}}}} \widehat{{\varvec{\uppi}}}^{T}{\mathbf{I}}_{S} } \right)^{T} {\hat{\mathbf{V}}}\left( {\nabla_{{\widehat{{\varvec{\upbeta}}}}} \widehat{{\varvec{\uppi}}}^{T}{\mathbf{I}}_{S} } \right)} = \sqrt {{\mathbf{I}}_{S}^{T} \left\{ {\left( {\nabla_{{\widehat{{\varvec{\upbeta}}}}} \widehat{{\varvec{\uppi}}}} \right)^{T} {\hat{\mathbf{V}}}\left( {\nabla_{{\widehat{{\varvec{\upbeta}}}}} \widehat{{\varvec{\uppi}}}} \right)} \right\}{\mathbf{I}}_{S} } $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crager, M.R. Extensions of the absolute standardized hazard ratio and connections with measures of explained variation and variable importance. Lifetime Data Anal 26, 872–892 (2020). https://doi.org/10.1007/s10985-020-09504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-020-09504-2

Keywords

Navigation