Skip to main content
Log in

Pathomechanisms in heart failure: the contractile connection

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Heart failure is a multi-factorial progressive disease in which eventually the contractile performance of the heart is insufficient to meet the demands of the body, even at rest. A distinction can be made on the basis of the cause of the disease in genetic and acquired heart failure and at the functional level between systolic and diastolic heart failure. Here the basic determinants of contractile function of myocardial cells will be reviewed and an attempt will be made to elucidate their role in the development of heart failure. The following topics are addressed: the tension generating capacity, passive tension, the rate of tension development, the rate of ATP utilisation, calcium sensitivity of tension development, phosphorylation of contractile proteins, length dependent activation and stretch activation. The reduction in contractile performance during systole can be attributed predominantly to a loss of cardiomyocytes (necrosis), myocyte disarray and a decrease in myofibrillar density all resulting in a reduction in the tension generating capacity and likely also to a mismatch between energy supply and demand of the myocardium. This leads to a decline in the ejection fraction of the heart. Diastolic dysfunction can be attributed to fibrosis and an increase in titin stiffness which result in an increase in stiffness of the ventricular wall and hampers the filling of the heart with blood during diastole. A large number of post translation modifications of regulatory sarcomeric proteins influence myocardial function by altering calcium sensitivity of tension development. It is still unclear whether in concert these influences are adaptive or maladaptive during the disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alegre-Cebollada J, Kosuri P, Giganti D et al (2014) S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding. Cell 156:1235–1246. doi:10.1016/j.cell.2014.01.056

    CAS  PubMed  Google Scholar 

  • Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168

    CAS  PubMed  Google Scholar 

  • Anversa P, Levicky V, Beghi C et al (1983) Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ Res 52:57–64

    CAS  PubMed  Google Scholar 

  • Arts T, Bovendeerd P, Delhaas T, Prinzen F (2003) Modeling the relation between cardiac pump function and myofiber mechanics. J Biomech 36:731–736

    CAS  PubMed  Google Scholar 

  • Bárány M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50(Suppl):197–218

    PubMed Central  PubMed  Google Scholar 

  • Barclay CJ, Widén C (2010) Efficiency of cross-bridges and mitochondria in mouse cardiac muscle. Adv Exp Med Biol 682:267–278. doi:10.1007/978-1-4419-6366-6_15

    CAS  PubMed  Google Scholar 

  • Barclay CJ, Woledge RC, Curtin NA (2010) Inferring crossbridge properties from skeletal muscle energetics. Prog Biophys Mol Biol 102:53–71. doi:10.1016/j.pbiomolbio.2009.10.003

    CAS  PubMed  Google Scholar 

  • Barsotti RJ, Ferenczi MA (1988) Kinetics of ATP hydrolysis and tension production in skinned cardiac muscle of the guinea pig. J Biol Chem 263:16750–16756

    CAS  PubMed  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. doi:10.1038/415198a

    CAS  PubMed  Google Scholar 

  • Bers DM (2014) Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107–127. doi:10.1146/annurev-physiol-020911-153308

    CAS  PubMed  Google Scholar 

  • Borbély A, van der Velden J, Papp Z et al (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774–781. doi:10.1161/01.CIR.0000155257.33485.6D

    PubMed  Google Scholar 

  • Borbély A, Falcao-Pires I, van Heerebeek L et al (2009) Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res 104:780–786. doi:10.1161/CIRCRESAHA.108.193326

    PubMed  Google Scholar 

  • Brenner B (1988) Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci USA 85:3265–3269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brenner B, Chalovich JM (1999) Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contrac. Biophys J 77:2692–2708

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83:3542–3546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bullard B, Pastore A (2011) Regulating the contraction of insect flight muscle. J Muscle Res Cell Motil 32:303–313. doi:10.1007/s10974-011-9278-1

    CAS  PubMed  Google Scholar 

  • Burgoyne T, Muhamad F, Luther PK (2008) Visualization of cardiac muscle thin filaments and measurement of their lengths by electron tomography. Cardiovasc Res 77:707–712. doi:10.1093/cvr/cvm117

    CAS  PubMed  Google Scholar 

  • Buscemi N, Foster DB, Neverova I, Van Eyk JE (2002) p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I. Circ Res 91:509–516

    CAS  PubMed  Google Scholar 

  • Cazorla O, Szilagyi S, Le Guennec J-Y et al (2005) Transmural stretch-dependent regulation of contractile properties in rat heart and its alteration after myocardial infarction. FASEB J 19:88–90. doi:10.1096/fj.04-2066fje

    CAS  PubMed  Google Scholar 

  • Chan JY, Takeda M, Briggs LE et al (2008) Identification of cardiac-specific myosin light chain kinase. Circ Res 102:571–580. doi:10.1161/CIRCRESAHA.107.161687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Colson BA, Bekyarova T, Locher MR et al (2008) Protein kinase A-mediated phosphorylation of cMyBP-C increases proximity of myosin heads to actin in resting myocardium. Circ Res 103:244–251. doi:10.1161/CIRCRESAHA.108.178996

    PubMed Central  CAS  PubMed  Google Scholar 

  • Copeland O, Sadayappan S, Messer AE et al (2010) Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle. J Mol Cell Cardiol 49:1003–1011. doi:10.1016/j.yjmcc.2010.09.007

    CAS  PubMed  Google Scholar 

  • Craig R, Lee KH, Mun JY et al (2014) Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflugers Arch 466:425–431. doi:10.1007/s00424-013-1426-6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crilley JG, Boehm EA, Blair E et al (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41:1776–1782

    CAS  PubMed  Google Scholar 

  • Davis JS, Hassanzadeh S, Winitsky S et al (2001) The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 107:631–641

    CAS  PubMed  Google Scholar 

  • Ding P, Huang J, Battiprolu PK et al (2010) Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo. J Biol Chem 285:40819–40829. doi:10.1074/jbc.M110.160499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dobesh DP, Konhilas JP, de Tombe PP (2002) Cooperative activation in cardiac muscle: impact of sarcomere length. Am J Physiol Heart Circ Physiol 282:H1055–H1062. doi:10.1152/ajpheart.00667.2001

    CAS  PubMed  Google Scholar 

  • Falcão-Pires I, Hamdani N, Borbély A et al (2011) Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation 124:1151–1159. doi:10.1161/CIRCULATIONAHA.111.025270

    PubMed  Google Scholar 

  • Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol 58:175–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119. doi:10.1038/368113a0

    CAS  PubMed  Google Scholar 

  • Fitzsimons DP, Moss RL (2007) Cooperativity in the regulation of force and the kinetics of force development in heart and skeletal muscles: cross-bridge activation of force. Adv Exp Med Biol 592:177–189. doi:10.1007/978-4-431-38453-3_16

    PubMed  Google Scholar 

  • Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370–447

    Google Scholar 

  • Fusi L, Brunello E, Sevrieva IR et al (2014) Structural dynamics of troponin during activation of skeletal muscle. Proc Natl Acad Sci USA 111:4626–4631. doi:10.1073/pnas.1321868111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galler S, Hilber K, Pette D (1997) Stretch activation and myosin heavy chain isoforms of rat, rabbit and human skeletal muscle fibres. J Muscle Res Cell Motil 18:441–448

    CAS  PubMed  Google Scholar 

  • Gao WD, Backx PH, Azan-Backx M, Marban E (1994) Myofilament Ca2+ sensitivity in intact versus skinned rat ventricular muscle. Circ Res 74:408–415

    CAS  PubMed  Google Scholar 

  • Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J 14:1952–1960

    PubMed Central  CAS  PubMed  Google Scholar 

  • Godt RE, Maughan DW (1981) Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit. Pflugers Arch 391:334–337

    CAS  PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044. doi:10.1016/S0006-3495(95)80278-X

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanft LM, Biesiadecki BJ, McDonald KS (2013) Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24. J Physiol 591:4535–4547. doi:10.1113/jphysiol.2013.258400

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hidalgo CG, Chung CS, Saripalli C et al (2013) The multifunctional Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) phosphorylates cardiac titin’s spring elements. J Mol Cell Cardiol 54:90–97. doi:10.1016/j.yjmcc.2012.11.012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380. doi:10.1056/NEJMra072139

    CAS  PubMed  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    CAS  PubMed  Google Scholar 

  • Huxley AF, Simmons RM (1970) Rapid “give” and the tension “shoulder” in the relaxation of frog muscle fibres. J Physiol 210:32P–33P

    CAS  PubMed  Google Scholar 

  • Huxley AF, Simmons RM (1971) Mechanical properties of the cross-bridges of frog striated muscle. J Physiol 218(Suppl):59P–60P

    PubMed  Google Scholar 

  • Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145. doi:10.1161/01.RES.0000137170.41939.d9

    CAS  PubMed  Google Scholar 

  • Jia W, Shaffer JF, Harris SP, Leary JA (2010) Identification of novel protein kinase A phosphorylation sites in the M-domain of human and murine cardiac myosin binding protein-C using mass spectrometry analysis. J Proteome Res 9:1843–1853. doi:10.1021/pr901006h

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jideama NM, Noland TA, Raynor RL et al (1996) Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J Biol Chem 271:23277–23283

    CAS  PubMed  Google Scholar 

  • Kentish JC, ter Keurs HE, Ricciardi L et al (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58:755–768

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67:39–67. doi:10.1146/annurev.physiol.67.040403.114025

    CAS  PubMed  Google Scholar 

  • Konhilas JP, Irving TC, de Tombe PP (2002) Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. Circ Res 90:59–65

    CAS  PubMed  Google Scholar 

  • Konhilas JP, Irving TC, Wolska BM et al (2003) Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing. J Physiol 547:951–961. doi:10.1113/jphysiol.2002.038117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kooij V, Boontje N, Zaremba R et al (2010) Protein kinase C alpha and epsilon phosphorylation of troponin and myosin binding protein C reduce Ca2+ sensitivity in human myocardium. Basic Res Cardiol 105:289–300. doi:10.1007/s00395-009-0053-z

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kooij V, Holewinski RJ, Murphy AM, Van Eyk JE (2013a) Characterization of the cardiac myosin binding protein-C phosphoproteome in healthy and failing human hearts. J Mol Cell Cardiol 60:116–120. doi:10.1016/j.yjmcc.2013.04.012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kooij V, Zhang P, Piersma SR et al (2013b) PKCα-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis. PLoS ONE 8:e74847. doi:10.1371/journal.pone.0074847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kötter S, Gout L, Von Frieling-Salewsky M et al (2013) Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res 99:648–656. doi:10.1093/cvr/cvt144

    PubMed  Google Scholar 

  • Krueger JW, Tsujioka K, Okada T et al (1988) A “give” in tension and sarcomere dynamics in cardiac muscle relaxation. Adv Exp Med Biol 226:567–580

    CAS  PubMed  Google Scholar 

  • Kuster DWD, Sequeira V, Najafi A et al (2013) GSK3β phosphorylates newly identified site in the proline-alanine-rich region of cardiac myosin-binding protein C and alters cross-bridge cycling kinetics in human: short communication. Circ Res 112:633–639. doi:10.1161/CIRCRESAHA.112.275602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lehrer SS, Geeves MA (2014) The myosin-activated thin filament regulatory state, M (-) -open: a link to hypertrophic cardiomyopathy (HCM). J Muscle Res Cell Motil. doi:10.1007/s10974-014-9383-z

    PubMed  Google Scholar 

  • Linke WA, Hamdani N (2014) Gigantic business: titin properties and function through thick and thin. Circ Res 114:1052–1068. doi:10.1161/CIRCRESAHA.114.301286

    CAS  PubMed  Google Scholar 

  • Luther PK, Bennett PM, Knupp C et al (2008) Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle. J Mol Biol 384:60–72. doi:10.1016/j.jmb.2008.09.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manning EP, Tardiff JC, Schwartz SD (2011) A model of calcium activation of the cardiac thin filament. Biochemistry 50:7405–7413. doi:10.1021/bi200506k

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maron BJ, Wolfson JK, Roberts WC (1992) Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol 70:785–790

    CAS  PubMed  Google Scholar 

  • Matsubara I, Elliott GF (1972) X-ray diffraction studies on skinned single fibres of frog skeletal muscle. J Mol Biol 72:657–669

    CAS  PubMed  Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701. doi:10.1016/S0006-3495(93)81110-X

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mittmann K, Jaquet K, Heilmeyer LM (1992) Ordered phosphorylation of a duplicated minimal recognition motif for cAMP-dependent protein kinase present in cardiac troponin I. FEBS Lett 302:133–137

    CAS  PubMed  Google Scholar 

  • Moolman-Smook J, Flashman E, de Lange W et al (2002) Identification of novel interactions between domains of myosin binding protein-C that are modulated by hypertrophic cardiomyopathy missense mutations. Circ Res 91:704–711

    CAS  PubMed  Google Scholar 

  • Morano I (1999) Tuning the human heart molecular motors by myosin light chains. J Mol Med (Berl) 77:544–555

    CAS  Google Scholar 

  • Nixon BR, Thawornkaiwong A, Jin J et al (2012) AMP-activated protein kinase phosphorylates cardiac troponin I at Ser-150 to increase myofilament calcium sensitivity and blunt PKA-dependent function. J Biol Chem 287:19136–19147. doi:10.1074/jbc.M111.323048

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noland TA, Raynor RL, Kuo JF (1989) Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem 264:20778–20785

    CAS  PubMed  Google Scholar 

  • Noland TA, Guo X, Raynor RL et al (1995) Cardiac troponin I mutants. phosphorylation by protein kinases C and A and regulation of Ca2+-stimulated MgATPase of reconstituted actomyosin S-1. J Biol Chem 270:25445–25454

    CAS  PubMed  Google Scholar 

  • Olivotto I, Cecchi F, Poggesi C, Yacoub MH (2009) Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat Rev Cardiol 6:317–321. doi:10.1038/nrcardio.2009.9

    CAS  PubMed  Google Scholar 

  • Page E (1978) Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol 235:C147–C158

    CAS  PubMed  Google Scholar 

  • Papp Z, van der Velden J, Stienen GJM (2000) Calpain-I induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of rat heart. Cardiovasc Res 45:981–993

    CAS  PubMed  Google Scholar 

  • Patterson SW, Piper H, Starling EH (1914) The regulation of the heart beat. J Physiol 48:465–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poveda F, Gil D, Martí E et al (2013) Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography. Rev Esp Cardiol (Engl Ed) 66:782–790. doi:10.1016/j.rec.2013.04.021

    Google Scholar 

  • Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333:1440–1445. doi:10.1126/science.1202768

    CAS  PubMed  Google Scholar 

  • Rall JA (1982) Sense and nonsense about the Fenn effect. Am J Physiol 242:H1–H6

    CAS  PubMed  Google Scholar 

  • Reggiani C, Potma EJ, Bottinelli R et al (1997) Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat. J Physiol 502(2(Pt 2)):449–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sancho Solis R, Ge Y, Walker JW (2008) Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry. J Muscle Res Cell Motil 29:203–212. doi:10.1007/s10974-009-9168-y

    CAS  PubMed  Google Scholar 

  • Schlecht W, Zhou Z, Li K-L et al (2014) FRET study of the structural and kinetic effects of PKC phosphomimetic cardiac troponin T mutants on thin filament regulation. Arch Biochem Biophys 550:1–11. doi:10.1016/j.abb.2014.03.013

    PubMed  Google Scholar 

  • Schulz EM, Wilder T, Chowdhury SAK et al (2013) Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy. J Biol Chem 288:28925–28935. doi:10.1074/jbc.M113.466466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scruggs SB, Reisdorph R, Armstrong ML et al (2010) A novel, in-solution separation of endogenous cardiac sarcomeric proteins and identification of distinct charged variants of regulatory light chain. Mol Cell Proteomics 9:1804–1818. doi:10.1074/mcp.M110.000075

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sequeira V, Wijnker PJM, Nijenkamp LLAM et al (2013) Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 112:1491–1505. doi:10.1161/CIRCRESAHA.111.300436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheikh F, Ouyang K, Campbell SG et al (2012) Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. J Clin Invest 122:1209–1221. doi:10.1172/JCI61134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siemankowski RF, Wiseman MO, White HD (1985) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci 82:658–662. doi:10.1073/pnas.82.3.658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith NP, Barclay CJ, Loiselle DS (2005) The efficiency of muscle contraction. Prog Biophys Mol Biol 88:1–58. doi:10.1016/j.pbiomolbio.2003.11.014

    CAS  PubMed  Google Scholar 

  • Solaro RJ, Moir AJ, Perry SV (1976) Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262:615–617

    CAS  PubMed  Google Scholar 

  • Solaro RJ, van der Velden J (2010) Why does troponin I have so many phosphorylation sites? Fact and fancy. J Mol Cell Cardiol 48:810–816. doi:10.1016/j.yjmcc.2010.02.014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342. doi:10.1152/physrev.00012.2007

    CAS  PubMed  Google Scholar 

  • Spotnitz HM, Sonnenblick EH, Spiro D (1966) Relation of ultrastructure to function in the Intact heart: sarcomere structure relative to pressure volume curves of Intact left ventricles of dog and cat. Circ Res 18:49–66. doi:10.1161/01.RES.18.1.49

    CAS  PubMed  Google Scholar 

  • Squire JM, Luther PK, Knupp C (2003) Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain. J Mol Biol 331:713–724

    CAS  PubMed  Google Scholar 

  • Steffen W, Smith D, Simmons R, Sleep J (2001) Mapping the actin filament with myosin. Proc Natl Acad Sci USA 98:14949–14954. doi:10.1073/pnas.261560698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stehle R, Solzin J, Iorga B et al (2006) Mechanical properties of sarcomeres during cardiac myofibrillar relaxation: stretch-induced cross-bridge detachment contributes to early diastolic filling. J Muscle Res Cell Motil 27:423–434. doi:10.1007/s10974-006-9072-7

    CAS  PubMed  Google Scholar 

  • Stehle R, Solzin J, Iorga B, Poggesi C (2009) Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflugers Arch 458:337–357. doi:10.1007/s00424-008-0630-2

    CAS  PubMed  Google Scholar 

  • Steiger GJ (1977) Tension transients in extracted rabbit heart muscle preparations. J Mol Cell Cardiol 9:671–685

    CAS  PubMed  Google Scholar 

  • Stelzer JE, Dunning SB, Moss RL (2006) Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ Res 98:1212–1218. doi:10.1161/01.RES.0000219863.94390.ce

    CAS  PubMed  Google Scholar 

  • Stienen GJM, Blangé T (1981) Local movement in stimulated frog sartorius muscle. J Gen Physiol 78:151–170

    CAS  PubMed  Google Scholar 

  • Stienen GJM, Blangé T, Treijtel BW (1985) Tension development and calcium sensitivity in skinned muscle fibres of the frog. Pflugers Arch 405:19–23

    CAS  PubMed  Google Scholar 

  • Stienen GJM, Papp Z, Elzinga G (1993) Calcium modulates the influence of length changes on the myofibrillar adenosine triphosphatase activity in rat skinned cardiac trabeculae. Pflugers Arch 425:199–207

    CAS  PubMed  Google Scholar 

  • Sumandea MP, Pyle WG, Kobayashi T et al (2003) Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J Biol Chem 278:35135–35144. doi:10.1074/jbc.M306325200

    CAS  PubMed  Google Scholar 

  • Sun Y-B, Irving M (2010) The molecular basis of the steep force-calcium relation in heart muscle. J Mol Cell Cardiol 48:859–865. doi:10.1016/j.yjmcc.2009.11.019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sweeney HL, Stull JT (1986) Phosphorylation of myosin in permeabilized mammalian cardiac and skeletal muscle cells. Am J Physiol Cell Physiol 250:C657–C660

    CAS  Google Scholar 

  • Tachampa K, Wang H, Farman GP, de Tombe PP (2007) Cardiac troponin I threonine 144: role in myofilament length dependent activation. Circ Res 101:1081–1083. doi:10.1161/CIRCRESAHA.107.165258

    CAS  PubMed  Google Scholar 

  • Taegtmeyer H, Ingwall JS (2013) Creatine–a dispensable metabolite? Circ Res 112:878–880. doi:10.1161/CIRCRESAHA.113.300974

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taegtmeyer H, Beauloye C, Harmancey R, Hue L (2013) Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am J Physiol Heart Circ Physiol 305:H1693–H1697. doi:10.1152/ajpheart.00854.2012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90:1295–1307. doi:10.1529/biophysj.105.068429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ter Keurs HE, Rijnsburger WH, van Heuningen R, Nagelsmit MJ (1980) Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res 46:703–714

    Google Scholar 

  • Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58:447–481. doi:10.1146/annurev.ph.58.030196.002311

    CAS  PubMed  Google Scholar 

  • Tong CW, Stelzer JE, Greaser ML et al (2008) Acceleration of crossbridge kinetics by protein kinase A phosphorylation of cardiac myosin binding protein C modulates cardiac function. Circ Res 103:974–982. doi:10.1161/CIRCRESAHA.108.177683

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Velden J (2011) Diastolic myofilament dysfunction in the failing human heart. Pflugers Arch 462:155–163. doi:10.1007/s00424-011-0960-3

    PubMed Central  PubMed  Google Scholar 

  • Van der Velden J, Papp Z, Boontje NM et al (2003) The effect of myosin light chain 2 dephosphorylation on Ca2+ -sensitivity of force is enhanced in failing human hearts. Cardiovasc Res 57:505–514

    PubMed  Google Scholar 

  • Van der Velden J, Narolska NA, Lamberts RR et al (2006) Functional effects of protein kinase C-mediated myofilament phosphorylation in human myocardium. Cardiovasc Res 69:876–887. doi:10.1016/j.cardiores.2005.11.021

    PubMed  Google Scholar 

  • Van Dijk SJ, Boontje NM, Heymans MW et al (2014) Preserved cross-bridge kinetics in human hypertrophic cardiomyopathy patients with MYBPC3 mutations. Pflugers Arch 466:1619–1633. doi:10.1007/s00424-013-1391-0

    PubMed  Google Scholar 

  • Van Heerebeek L, Hamdani N, Handoko ML et al (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117:43–51. doi:10.1161/CIRCULATIONAHA.107.728550

    PubMed  Google Scholar 

  • Varian KD, Raman S, Janssen PML (2006) Measurement of myofilament calcium sensitivity at physiological temperature in intact cardiac trabeculae. Am J Physiol Heart Circ Physiol 290:H2092–H2097. doi:10.1152/ajpheart.01241.2005

    CAS  PubMed  Google Scholar 

  • Varma N, Eberli FR, Apstein CS (2001) Left ventricular diastolic dysfunction during demand ischemia: rigor underlies increased stiffness without calcium-mediated tension. amelioration by glycolytic substrate. J Am Coll Cardiol 37:2144–2153. doi:10.1016/S0735-1097(01)01282-7

    CAS  PubMed  Google Scholar 

  • Varnava AM, Elliott PM, Mahon N et al (2001) Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 88:275–279

    CAS  PubMed  Google Scholar 

  • Wang YP, Fuchs F (1995) Osmotic compression of skinned cardiac and skeletal muscle bundles: effects on force generation, Ca2+ sensitivity and Ca2+ binding. J Mol Cell Cardiol 27:1235–1244

    CAS  PubMed  Google Scholar 

  • Wang L, Ji X, Barefield D et al (2014) Phosphorylation of cMyBP-C affects contractile mechanisms in a site-specific manner. Biophys J 106:1112–1122. doi:10.1016/j.bpj.2014.01.029

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warren SA, Briggs LE, Zeng H et al (2012) Myosin light chain phosphorylation is critical for adaptation to cardiac stress. Circulation 126:2575–2588. doi:10.1161/CIRCULATIONAHA.112.116202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss S, Rossi R, Pellegrino MA et al (2001) Differing ADP release rates from myosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers. J Biol Chem 276:45902–45908. doi:10.1074/jbc.M107434200

    CAS  PubMed  Google Scholar 

  • Whitten AE, Jeffries CM, Harris SP, Trewhella J (2008) Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function. Proc Natl Acad Sci USA 105:18360–18365. doi:10.1073/pnas.0808903105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wijnker PJM, Foster DB, Murphy AM et al (2013a) Impact of phosphorylation of the proteine kinase C sites Ser42/44, Thr143 and Ser199 on cardiac troponin I on myofilament function in human cardiomyocytes. Biophys J 104:155a

    Google Scholar 

  • Wijnker PJM, Foster DB, Tsao AL et al (2013b) Impact of site-specific phosphorylation of protein kinase A sites Ser23 and Ser24 of cardiac troponin I in human cardiomyocytes. Am J Physiol Heart Circ Physiol 304:H260–H268. doi:10.1152/ajpheart.00498.2012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wijnker PJM, Sequeira V, Foster DB et al (2014a) Length-dependent activation is modulated by cardiac troponin I bisphosphorylation at Ser23 and Ser24 but not by Thr143 phosphorylation. Am J Physiol Heart Circ Physiol 306:H1171–H1181. doi:10.1152/ajpheart.00580.2013

    CAS  PubMed  Google Scholar 

  • Wijnker PJM, Sequeira V, Witjas-Paalberends ER et al (2014b) Phosphorylation of protein kinase C sites Ser42/44 decreases Ca2+-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes. Arch Biochem Biophys 554C:11–21. doi:10.1016/j.abb.2014.04.017

    Google Scholar 

  • Witjas-Paalberends ER, Güçlü A, Germans T et al (2014) Gene-specific increase in energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res. doi:10.1093/cvr/cvu127

    PubMed  Google Scholar 

  • Witt CC, Burkart C, Labeit D et al (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855. doi:10.1038/sj.emboj.7601242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zannad F (2014) What is measured by cardiac fibrosis biomarkers and imaging? Circ Heart Fail 7:239–242. doi:10.1161/CIRCHEARTFAILURE.114.001156

    PubMed  Google Scholar 

  • Zhang J, Guy MJ, Norman HS et al (2011) Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res 10:4054–4065. doi:10.1021/pr200258m

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang P, Kirk JA, Ji W et al (2012) Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart. Circulation 126:1828–1837. doi:10.1161/CIRCULATIONAHA.112.096388

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. M. Stienen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stienen, G.J.M. Pathomechanisms in heart failure: the contractile connection. J Muscle Res Cell Motil 36, 47–60 (2015). https://doi.org/10.1007/s10974-014-9395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-014-9395-8

Keywords

Navigation