Skip to main content
Log in

Endothermic and exothermic chemical reaction on MHD ternary (Fe2O4–TiO2–Ag/H2O) nanofluid flow over a variable thickness surface

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recently, there has been an increasing recognition of the crucial significance of waste management and the need for environmental preservation. Moreover, the impact of endothermic and exothermic reactions on heat transfer and the behavior of liquids on surfaces of variable thicknesses has significant implications for improving diverse operations, such as temperature exchange systems, commercial power plants, and waste administration facilities. In view of these applications, the current study investigates the endothermic and exothermic chemical reactions and waste discharge concentration over variable thickness surface. The governing equations are transformed into ordinary differential equations and solved using Runge–Kutta–Fehlberg 45 method. The results are visually presented using graphs and then analyzed. The results claim that the heat transfer rate is significant in the presence of wall thickness parameter and exothermic reaction. Elevated concentrations are observed when the external source parameter is augmented, and higher rate concentrations are commonly observed when the wall thickness parameter is present. This study explores the complex interaction of these responses and their consequences, providing insight into how they might be used to enhance these crucial processes. Further, it also focuses mainly on the concentration of waste discharge. It aims to provide significant insights into the impact of these processes on waste treatment operations, pollution control, and the effective disposal of industrial waste. The outcomes offer a strong basis for making well-informed decisions in companies and environmental sectors that rely on efficient waste management and sustainable practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Stretching rate

b :

Shift constant

B 0 :

Magnetic field (kg0.5Ω0.5s0.5m1)

Cp:

Specific heat (J kg−1 K−1)

C*:

Concentration

\(C_{\infty } *\) :

Ambient concentration

\(C_{{\text{w}}} *\) :

Wall concentration

Cf:

Skin friction

D :

Diffusivity (m2 s−1)

Ea:

Activation energy (kg m2 s−2)

E :

Activation energy parameter

k :

Thermal conductivity (kg ms−3 K−1)

\(k_{{\text{r}}}^{2}\) :

Reaction rate (s−1)

K :

Boltzmann constant (kg m2 s−2 K−1)

m :

Power index of the velocity

ml :

Fitted rate constant

\(M^{*}\) :

Magnetic parameter

Nu:

Nusselt number

Pr:

Prandtl number

P E :

Parameter related to local pollutant external source

P In :

External pollutant source variation parameter

Re:

Local Reynolds number

\(S\left( {C*} \right)\) :

External pollutant source function

Sh:

Sherwood number

Sc:

Schmidt number

T*:

Temperature (K)

\(T_{\infty } *\) :

Ambient temperature (K)

\(T_{{\text{w}}} *\) :

Wall temperature (K)

\(u_{{\text{w}}} *\) :

Uniform velocity (ms−1)

(u*,v*):

Velocity components (ms−1)

(x*,y*):

Coordinates (m)

\(\nu\) :

Kinematic viscosity (m2s−1)

\(\alpha\) :

Wall thickness parameter

\(\delta_{C}\) :

Reaction rate parameter

\(\rho\) :

Density (kgm−3)

\(\varphi_{1} ,\varphi_{2} ,\varphi_{3}\) :

Solid volume fraction

\(\sigma\) :

Electrical conductivity (Ω−1m−1)

\(\lambda^{*}\) :

Endo\exothermic parameter

\(\beta\) :

Endo/exothermic factor

\(\delta\) :

Temperature difference parameter

Thnf:

Ternary hybrid nanofluid

Nf:

Nanofluid

Hnf:

Hybrid nanofluid

f:

Fluid

References

  1. Aly EH, Ebaid A. MHD Marangoni boundary layer problem for hybrid nanofluids with thermal radiation. Int J Numer Methods Heat Fluid Flow. 2020;31:897–913.

    Article  Google Scholar 

  2. Hussein SA. Numerical simulation for peristaltic transport of radiative and dissipative MHD Prandtl nanofluid through the vertical asymmetric channel in the presence of double diffusion convection. Numer Heat Transf Part B Fundam. 2023;85:1–27.

    Google Scholar 

  3. Madhukesh JK, Ramesh GK, Shehzad SA, Chapi S, Prabhu KI. Thermal transport of MHD Casson-Maxwell nanofluid between two porous disks with Cattaneo-Christov theory. Numer Heat Transf Part Appl. 2023. https://doi.org/10.1080/10407782.2023.2214322.

    Article  Google Scholar 

  4. Shehzad SA, Rauf A, Perveen B, Mustafa F, Alahmadi H, Mushtaq T, Ijaz A. Numerical and regression analysis of horizontal magnetic field in slippery nanofluid flow with Arrhenius activation energy. J Mol Liq. 2023;392: 123522.

    Article  CAS  Google Scholar 

  5. Wahid NS, Arifin NM, Khashi’ie NS, Pop I. Mixed convection MHD hybrid nanofluid over a shrinking permeable inclined plate with thermal radiation effect. Alex Eng J. 2023;66:769–83.

    Article  Google Scholar 

  6. Rauf A, Mushtaq T, Javed M, Alahmadi H, Shehzad SA. Modeling and analysis of Bödewadt hybrid nanofluid flow triggered by a stretchable stationary disk under Hall current. Case Stud Therm Eng. 2023;49: 103315.

    Article  Google Scholar 

  7. Yusuf TA, Naveen Kumar R, Punith Gowda RJ, Akpan UD. Entropy generation on flow and heat transfer of a reactive MHD Sisko fluid through inclined walls with porous medium. Int J Ambient Energy. 2022;43:6307–16.

    Article  CAS  Google Scholar 

  8. Rao DPC, Babu MJ, Shehzad SA, Qaisar S. Entropy generation optimization in a radiative hybrid nanofluid (engine oil + NiZnFe2O4 + MnZnFe2O4) flow through a convectively heated microchannel with cross-diffusion effects. J Therm Anal Calorim. 2023;148:10907–16.

    Article  CAS  Google Scholar 

  9. Hamid A, Naveen Kumar R, Punith Gowda RJ, Varun Kumar RS, Khan SU, Ijaz Khan M, Prasannakumara BC, Muhammade T. Impact of Hall current and homogenous–heterogenous reactions on MHD flow of GO-MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.1985746.

    Article  Google Scholar 

  10. Shankar G, Sheri SR, Shehzad SA. Numerical study of transient chemical reactive magnetized Casson fluid flow in the presence of Newtonian heating. Int J Model Simul. 2023. https://doi.org/10.1080/02286203.2023.2249641.

    Article  Google Scholar 

  11. Adnan AW. Heat transfer mechanism in ternary nanofluid between parallel plates channel using modified Hamilton-Crossers model and thermal radiation effects. Geoenergy Sci Eng. 2023;225: 211732.

    Article  CAS  Google Scholar 

  12. Chen H, He P, Shen M, Ma Y. Thermal analysis and entropy generation of Darcy-Forchheimer ternary nanofluid flow: A comparative study. Case Stud Therm Eng. 2023;43: 102795.

    Article  Google Scholar 

  13. Hasnain J, Abid N. Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet. Numer Heat Transf Part Appl. 2023;83:1365–76.

    Article  Google Scholar 

  14. Madhukesh JK, Ramesh GK, Shehzad SA, Rauf A, Omar M. A microstructural slip analysis of radiative thermophoretic flow of ternary nanofluid flowing through porous medium. Phys Scr. 2023;98: 065213.

    Article  Google Scholar 

  15. Madhukesh JK, Sarris IE, Vinutha K, Prasannakumara BC, Abdulrahman A. Computational analysis of ternary nanofluid flow in a microchannel with nonuniform heat source/sink and waste discharge concentration. Numer Heat Transf Part Appl. 2023;0:1–18. https://doi.org/10.1080/10407782.2023.2240509.

  16. Sarada K, Gamaoun F, Abdulrahman A, Paramesh SO, Kumar R, Prasanna GD, Gowda RJP. Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model. Case Stud Therm Eng. 2022;38: 102332.

    Article  Google Scholar 

  17. Kumar RN, Gamaoun F, Abdulrahman A, Chohan JS, Gowda RJP. Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study. Int J Mod Phys B. 2022;36:2250170.

    Article  Google Scholar 

  18. Khan U, Naveen Kumar R, Zaib A, Prasannakumara BC, Ishak A, Galal AM, Gowda RJP. Time-dependent flow of water-based ternary hybrid nanoparticles over a radially contracting/expanding and rotating permeable stretching sphere. Therm Sci Eng Prog. 2022;36: 101521.

    Article  CAS  Google Scholar 

  19. Nagapavani M, Ramana Reddy GV, Abdulrahman A, Kumar R, Punith Gowda RJ. Three-dimensional swirling flow of a ternary composite nanofluid induced by the torsional motion of a cylinder considering non-Fourier law. Numer Heat Transf Part Appl. 2023. https://doi.org/10.1080/10407782.2023.2219834.

    Article  Google Scholar 

  20. Hussain SM, Jamshed W, Safdar R, Shahzad F, Mohd Nasir NAA, Ullah I. Chemical reaction and thermal characteristiecs of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: A modified Buongiorno’s model. Energy Environ. 2023;34:1409–32.

    Article  CAS  Google Scholar 

  21. Mehmood Y, Shafqat R, Sarris IE, Bilal M, Sajid T, Akhtar T. Numerical investigation of MWCNT and SWCNT fluid flow along with the activation energy effects over quartic auto catalytic endothermic and exothermic chemical reactions. Mathematics. 2022;10:4636.

    Article  Google Scholar 

  22. Sajid T, Al Mesfer MK, Jamshed W, Eid MR, Danish M, Irshad K, Ibrahim RW, Batool S, El Din SM, Altamirano GC. Endo/exothermic chemical processes influences of tri-hybridity nanofluids flowing over wedge with convective boundary constraints and activation energy. Results Phys. 2023;51: 106676.

    Article  Google Scholar 

  23. Ullah I, Alam MM, Rahman MM, Pasha AA, Jamshed W, Galal AM. Theoretical analysis of entropy production in exothermic/endothermic reactive magnetized nanofluid flow through curved porous space with variable permeability and porosity. Int Commun Heat Mass Transf. 2022;139: 106390.

    Article  CAS  Google Scholar 

  24. Maleque KA. Effects of exothermic/endothermic chemical reactions with arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J Thermodyn. 2013;2013: e692516.

    Google Scholar 

  25. Algehyne EA, Saeed A, Arif M, Bilal M, Kumam P, Galal AM. Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach. Sci Rep. 2023;13:13675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anjum N, Khan WA, Azam M, Ali M, Waqas M, Hussain I. Significance of bioconvection analysis for thermally stratified 3D Cross nanofluid flow with gyrotactic microorganisms and activation energy aspects. Therm Sci Eng Prog. 2023;38: 101596.

    Article  CAS  Google Scholar 

  27. Jawad M, Hameed MK, Nisar KS, Majeed AH. Darcy-Forchheimer flow of maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and nield boundary conditions. Case Stud Therm Eng. 2023;44: 102830.

    Article  Google Scholar 

  28. Ramesh GK, Madhukesh JK, Hiremath PN, Roopa GS. Thermal transport of magnetized nanoliquid flow over lubricated surface with activation energy and heat source/sink. Numer Heat Transf Part B Fundam. 2023. https://doi.org/10.1080/10407790.2023.2257880.

    Article  Google Scholar 

  29. Salahuddin T, Maqsood A, Awais M, Khan M, Altanji M. Significance of MHD Cross nanofluid analysis near a stretched surface with double stratification and activation energy. Int Commun Heat Mass Transf. 2023;143: 106732.

    Article  CAS  Google Scholar 

  30. Jyothi AM, Naveen Kumar R, Punith Gowda RJ, Veeranna Y, Prasannakumara BC. Impact of activation energy and gyrotactic microorganisms on flow of Casson hybrid nanofluid over a rotating moving disk. Heat Transf. 2021;50:5380–99.

    Article  Google Scholar 

  31. Chinyoka T, Makinde OD. Modelling and Analysis of the Dispersal of a Polymeric Pollutant Injected into a Channel Flow of a Newtonian Liquid. Diffus Found Mater Appl. 2023;33:23–56.

    CAS  Google Scholar 

  32. Elatter S, Khan U, Zaib A, Ishak A, Saleh W, Abed AM. Scrutinization of waste discharge concentrations in eyring-powell nanofluid past a deformable horizontal plane surface. Water. 2023;15:3419.

    Article  Google Scholar 

  33. Vinutha K, Sunitha M, Madhukesh JK, Khan U, Zaib A. Sherif E-SM, Hassan AM, Pop I, computational examination of heat and mass transfer induced by ternary nanofluid flow across convergent/divergent channels with pollutant concentration. Water. 2023;15:2955.

    Article  Google Scholar 

  34. Madhukesh JK, Sarris IE, Prasannakumara BC , Abdulrahman A. Computational analysis of ternary nanofluid flow in a microchannel with nonuniform heat source/sink and waste discharge concentration. Numer Heat Transf Part Appl. 2023. https://doi.org/10.1080/10407782.2023.2240509

  35. Madhukesh JK, Vinutha K, Kumar C, Khan U, Nagaraja KV, Sarris IE, El-Sayed MS, Hassan AM, Chohan JS. A Model development for thermal and solutal transport analysis of non-Newtonian nanofluid flow over a riga surface driven by a waste discharge concentration. Water. 2023;15:2879.

    Article  CAS  Google Scholar 

  36. Acharya N, Das K, Kumar KP. Ramification of variable thickness on MHD TiO2 and Ag nanofluid flow over a slendering stretching sheet using NDM. Eur Phys J Plus. 2016;131:303.

    Article  Google Scholar 

  37. Ramesh GK, Prasannakumara BC, Gireesha BJ, Rashidi MM. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J Appl Fluid Mech. 2016;9:1022–115.

    Google Scholar 

  38. Zaib A, Khan U, Shah Z, Kumam P, Thounthong P. Optimization of entropy generation in flow of micropolar mixed convective magnetite (Fe3O4) ferroparticle over a vertical plate. Alex Eng J. 2019;58:1461–70.

    Article  Google Scholar 

  39. Ahmed J, Shahzad A, Farooq A, Kamran M, Ud-Din Khan S, Ud-Din KS. Thermal analysis in swirling flow of titanium dioxide–aluminum oxide water hybrid nanofluid over a rotating cylinder. J Therm Anal Calorim. 2021;144:2175–85.

    Article  CAS  Google Scholar 

  40. Das S, Ali A, Jana RN, Makinde OD. EDL impact on mixed magneto-convection in a vertical channel using ternary hybrid nanofluid. Chem Eng J Adv. 2022;12: 100412.

    Article  CAS  Google Scholar 

  41. Fang T, Zhang J, Zhong Y. Boundary layer flow over a stretching sheet with variable thickness. Appl Math Comput. 2012;218:7241–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JKM and GKR were involved in conceptualization, methodology, software, formal analysis, writing—original draft, resources, data curation, investigation, visualization, and validation. EHA and BJG participated in conceptualization, project administration, writing—review and editing, supervision, and resources. JKM helped with validation, investigation, writing—review and editing, formal analysis, validation, and resources.

Corresponding author

Correspondence to G. K. Ramesh.

Ethics declarations

Conflict of interest

We do not have any sources of financial funding and support from government and private sector, so we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, G.K., Madhukesh, J.K., Aly, E.H. et al. Endothermic and exothermic chemical reaction on MHD ternary (Fe2O4–TiO2–Ag/H2O) nanofluid flow over a variable thickness surface. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13013-x

Keywords

Navigation