Skip to main content
Log in

Heat transfer enhancement in a double-pipe helical heat exchanger using spring wire insert and nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Double-pipe helical heat exchangers (DPHHXs) are widely used for cooling and heating applications. In this study, a combination of two methods is used to enhance the performance of DPHHX. The thermal–hydraulic performance is investigated using a nanofluid of silicon dioxide and water (SiO2/water) as well as spring wire insert (SWI) experimentally and numerically. The numerical model is validated with the experimental results. The parameters such as Nusselt number, pressure drop, exergy efficiency, and thermal–hydraulic enhancement factor are investigated for Reynolds number range from 4500 to 7000. The results show the Nusselt number is enhanced with nanofluid employment and SWI. Nusselt number increases by 34% when 0.1% volume concentration of nanofluid is used and by 43.5% when spring wire is only used compared to base water. The configuration with a 0.3% volume concentration and SWI achieves the highest Nusselt number enhancement ratio, exhibiting a 174% increase compared to other configurations. In the same case, the pressure drop ratio reaches its peak at 157%. The exergy efficiency improves with an increase in nanoparticle volume concentration, with the 0.3% concentration with SWI showing the highest values, ranging from 54 to 65%. Among different concentrations, the SiO2/water nanofluid with a 0.2% volume concentration with SWI demonstrates the highest thermal–hydraulic enhancement factor, making it the optimal choice. The results prove that spring wire inert is more effective than nanofluid in the DPHHX. The contours, streamlines, and vectors of the temperature, velocity, and pressure distributions give more understanding for the heat transfer and fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

ΔP :

Pressure drop/Pa

SiO2 :

Silicon dioxide

D h :

Hydraulic diameter/m

l :

Tube length/m

P :

Pressure/Pa

V :

Velocity/m s1

Nu :

Nusselt number

h :

Convective heat transfer coefficient, W m−2 K

Re :

Reynolds number

f :

Friction factor

K :

Thermal conductivity/W m1K1

t:

Tube

s:

Spring

w:

Wire

µ :

Dynamic viscosity/N s m2

\(\varphi\) :

The volume concentration of SiO2 nanoparticles

\(\rho\) :

Density/kg m3

\(\varepsilon\) :

Exergy efficiency

DPHHX:

Double-pipe helical heat exchanger

SWI:

Spring wire insert

CFD:

Computational fluid dynamic

CWP:

Cold water pump

HFP:

Hot fluid pump

HNT:

Hot nanofluid tank

References

  1. Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2:519659.

    Article  Google Scholar 

  2. Shin D, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf. 2011;54:1064–70.

    Article  CAS  Google Scholar 

  3. Kumaresan V, Velraj R. Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids. Thermochim Acta. 2012;545:180–6.

    Article  CAS  Google Scholar 

  4. Ghazvini M, Akhavan-Behabadi MA, Rasouli E, Raisee M. Heat transfer properties of nanodiamond-engine oil nanofluid in laminar flow. Heat Transf Eng. 2012;33:525–32.

    Article  ADS  CAS  Google Scholar 

  5. Marzouk SA, Aljabr A, Almehmadi FA, Alqaed S, Sharaf MA. Numerical study of heat transfer, exergy efficiency, and friction factor with nanofluids in a plate heat exchanger. J Therm Anal Calorim. 2023;148:11269–81.

    Article  CAS  Google Scholar 

  6. Hussein AM. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp Therm Fluid Sci. 2017;88:37–45.

    Article  CAS  Google Scholar 

  7. Wu Z, Wang L, Sundén B. Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl Therm Eng. 2013;60:266–74.

    Article  CAS  Google Scholar 

  8. Asirvatham LG, Raja B, Mohan Lal D, Wongwises S. Convective heat transfer of nanofluids with correlations. Particuology. 2011;9:626–31.

    Article  CAS  Google Scholar 

  9. Wei H, Moria H, Nisar KS, Ghandour R, Issakhov A, Sun YL, et al. Effect of volume fraction and size of Al2O3nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube. Case Stud Therm Eng. 2021;25: 100948.

    Article  Google Scholar 

  10. Fadodun OG, Kaood A, Hassan MA. Investigation of the entropy production rate of ferrosoferric oxide/water nanofluid in outward corrugated pipes using a two-phase mixture model. Int J Therm Sci. 2022;178: 107598.

    Article  CAS  Google Scholar 

  11. Khalil EE, Kaood A. Numerical investigation of thermal-hydraulic characteristics for turbulent nanofluid flow in various conical double pipe heat exchangers. AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics; 2021. p. 1–21

  12. Al-darraji AR, Marzouk SA, Aljabr A, Almehmadi FA, Alqaed S, Kaood A. Enhancement of heat transfer in a vertical shell and tube heat exchanger using air injection and new baffles: experimental and numerical approach. Appl Therm Eng. 2024;236: 121493.

    Article  Google Scholar 

  13. Kaood A, Elhagali IO, Hassan MA. Investigation of high-efficiency compact jet impingement cooling modules for high-power applications. Int J Therm Sci. 2023;184: 108006.

    Article  Google Scholar 

  14. Rashid FL, Rahbari A, Ibrahem RK, Talebizadehsardari P, Basem A, Kaood A, et al. Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration. J Energy Storage. 2023;67: 107501.

    Article  Google Scholar 

  15. Kaood A, Aboulmagd A, ElDegwy A. Entropy generation analysis of turbulent flow in conical tubes with dimples: a numerical study. J Therm Anal Calorim. 2023;148:5667–85.

    Article  CAS  Google Scholar 

  16. Vaisi A, Moosavi R, Lashkari M, Mohsen SM. Experimental investigation of perforated twisted tapes turbulator on thermal performance in double pipe heat exchangers. Chem Eng Process: Process Intensif. 2020;154: 108028.

    Article  CAS  Google Scholar 

  17. Kumar S, Dinesha P, Narayanan A, Nanda R. Effect of hemispherical turbulators in a double-pipe heat exchanger for heat transfer augmentation. J Turbul. 2020;21:166–85.

    Article  ADS  Google Scholar 

  18. Reddy NS, Rajagopal K, Veena PH. Experimental investigation of heat transfer enhancement of a double pipe heat exchanger with helical fins in the annulus side. Int J Dyn fluids. 2017;13:285–93.

    Google Scholar 

  19. Marzouk SA, Abou Al-Sood MM, El-Fakharany MK, El-Said EMS. Thermo-hydraulic study in a shell and tube heat exchanger using rod inserts consisting of wire-nails with air injection: experimental study. Int J Therm Sci. 2020;161:106742.

    Article  Google Scholar 

  20. Marzouk SA, Abou Al-Sood MM, El-Said EMS, El-Fakharany MK. Effect of wired nails circular–rod inserts on tube side performance of shell and tube heat exchanger: experimental study. Appl Therm Eng. 2020;167: 114696.

    Article  Google Scholar 

  21. Marzouk SA, Abou Al-Sood MM, El-Said EM, Younes MM, El-Fakharany MK. Evaluating the effects of bifurcation angle on the performance of a novel heat exchanger based on contractual theory. Renew Energy. 2023;219:119463.

    Article  Google Scholar 

  22. Al-Tohamy AH, Fadodun OG, Kaood A. Hydrothermal performance of a turbulent nanofluid with different nanoparticle shapes in a duct fitted with various configurations of coiled-wire inserts. J Therm Anal Calorim. 2023

  23. Hassan MA, Kassem MA, Kaood A. Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert. J Therm Anal Calorim. 2022;147:6847–68.

    Article  CAS  Google Scholar 

  24. Hassan MA, Kaood A. Multi-criteria assessment of enhanced radiant ceiling panels using internal longitudinal fins. Build Environ. 2022;224: 109554.

    Article  Google Scholar 

  25. Marzouk S, Abou Al-Sood MM, El-Said E, Younes MM, El-Fakharany M. Review of passive methods of heat transfer enhancement in helical tube heat exchanger. J Cont Technol Appl Eng. 2023;2:28–52.

    Article  Google Scholar 

  26. Elattar HF, Fouda A, Nada SA, Refaey HA, Al-Zahrani A. Thermal and hydraulic numerical study for a novel multi tubes in tube helically coiled heat exchangers: effects of operating/geometric parameters. Int J Therm Sci. 2018;128:70–83.

    Article  Google Scholar 

  27. Mokhtari Ardekani A, Kalantar V, Heyhat MM. Experimental study on heat transfer enhancement of nanofluid flow through helical tubes. Adv Powder Technol. 2019;30:1815–22.

    Article  CAS  Google Scholar 

  28. Hasan MJ, Ahmed SF, Bhuiyan AA. Geometrical and coil revolution effects on the performance enhancement of a helical heat exchanger using nanofluids. Case Stud Therm Eng. 2022;35: 102106.

    Article  Google Scholar 

  29. Naik BAK, Vinod AV. Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp Therm Fluid Sci. 2018;90:132–42.

    Article  CAS  Google Scholar 

  30. Srinivas T, Venu VA. Heat transfer intensification in a shell and helical coil heat exchanger using water-based nanofluids. Hem Eng Process: Process Intensif. 2016;102:1–8.

    Article  CAS  Google Scholar 

  31. Etghani MM, Baboli SAH. Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Appl Therm Eng. 2017;121:294–301.

    Article  Google Scholar 

  32. Wu Z, Wang L, Sundén B, Wadsö L. Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger. Appl Therm Eng. 2016;96:364–71.

    Article  CAS  Google Scholar 

  33. Radkar RN, Bhanvase BA, Barai DP, Sonawane SH. Intensified convective heat transfer using ZnO nanofluids in heat exchanger with helical coiled geometry at constant wall temperature. Mater Sci Energy Technol. 2019;2:161–70.

    Google Scholar 

  34. Hormozi F, ZareNezhad B, Allahyar HR. An experimental investigation on the effects of surfactants on the thermal performance of hybrid nanofluids in helical coil heat exchangers. Int Commun Heat Mass Transf. 2016;78:271–6.

    Article  CAS  Google Scholar 

  35. Sivalakshmi S, Raja M, Gowtham G. Effect of helical fins on the performance of a double pipe heat exchanger. Mater Today Proc. 2020;43:1128–31.

    Article  Google Scholar 

  36. Niwalkar AF, Kshirsagar JM, Kulkarni K. Experimental investigation of heat transfer enhancement in shell and helically coiled tube heat exchanger using SiO2/ water nanofluids. Mater Today Proc. 2019;18:947–62.

    Article  CAS  Google Scholar 

  37. Ravi Kulkarni H, Dhanasekaran C, Rathnakumar P, Sivaganesan S. Experimental study on thermal analysis of helical coil heat exchanger using Green synthesis silver nanofluid. Mater Today Proc. 2020;42:1037–42.

    Article  Google Scholar 

  38. Marzouk SA, Al-Sood MMA, El-Fakharany MK, El-Said EMS. A comparative numerical study of shell and multi-tube heat exchanger performance with different baffles configurations. Int J Therm Sci. 2022;179: 107655.

    Article  Google Scholar 

  39. Pourhedayat S, Khorasani S, Sadighi DH. A comprehensive analysis and empirical correlations for Nusselt number, friction factor and exergy destruction of helical tube equipped with spring-wire. Int J Therm Sci. 2019;145: 106050.

    Article  Google Scholar 

  40. Moria H. A comprehensive geometric investigation of non-circular cross section spring-wire turbulator through the spiral-tube based heat exchangers. Results Eng. 2023;17: 100906.

    Article  Google Scholar 

  41. Marzouk SA, Abou Al-Sood MM, El-Said EMS, Younes MM, El-Fakharany MK. Experimental and numerical investigation of a novel fractal tube configuration in helically tube heat exchanger. Int J Therm Sci. 2023;187: 108175.

    Article  Google Scholar 

  42. Marzouk SA, Abou Al-Sood MM, El-Said EMS, Younes MM, El-Fakharany MK. A comprehensive review of methods of heat transfer enhancement in shell and tube heat exchangers. J Therm Anal Calorim. 2023;148:7539–78.

    Article  CAS  Google Scholar 

  43. Balaga R, Koona R, Tunuguntla S. Heat transfer enhancement of the f-MWCNT- Fe2O3/Water hybrid nanofluid with the combined effect of wire coil with twisted tape and perforated twisted tape. Int J Therm Sci. 2023;184: 108023.

    Article  Google Scholar 

  44. Shajahan MI, Stephen C, Michael JJ, Arulprakasajothi M, Rathnakumar P, Parthasarathy M. Heat transfer investigations of in-line conical strip inserts using MWCNT/water nanofluid under laminar flow condition. Int J Therm Sci. 2023;183:107844.

    Article  CAS  Google Scholar 

  45. Altun AH, Ors S, Dogan S. Investigation of effects on turbulent heat transfer of twisted wavy tape elements in the tube. Int J Therm Sci. 2023;185: 108068.

    Article  Google Scholar 

  46. Taheripour S, Saffarian MR, Azimy N, Aghajari M. Numerical evaluation of the effect of using various twisted-tape geometries on heat transfer enhancement and flow characteristics in a tube. J Therm Anal Calorim. 2023;148:7829–44.

    Article  CAS  Google Scholar 

  47. Ranjbar B, Mohammadi F, Rahimi M. Heat transfer rate augmentation using a new self-rotating tube insert. J Therm Anal Calorim. 2022;147:14359–70.

    Article  CAS  Google Scholar 

  48. Basit Shafiq M, Allauddin U, Qaisrani MA, Rehman T, ur, Ahmed N, Usman Mushtaq M, et al. Thermal performance enhancement of shell and helical coil heat exchanger using MWCNTs/water nanofluid. J Therm Anal Calorim. 2022;147:12111–26.

    Article  CAS  Google Scholar 

  49. Baz FB, Elshenawy EA, El-Agouz SA, El-Samadony YAF, Marzouk SA. Experimental study on air impinging jet for effective cooling of multiple protruding heat sources. Int J Therm Sci. 2024;196: 108707.

    Article  Google Scholar 

  50. Marzouk SA, Abou Al-Sood MM, El-Said EMS, El-Fakharany MK, Younes MM. Study of heat transfer and pressure drop for novel configurations of helical tube heat exchanger: a numerical and experimental approach. J Therm Anal Calorim. 2023;148:6267–82.

    Article  CAS  Google Scholar 

  51. Marzouk SA, El-Fakharany MK, Baz FB. Heat transfer performance of particle solar receiver: numerical study. Heat Transf Res. 2022;53:1–19.

    Article  Google Scholar 

  52. Hassan MA, Al-Tohamy AH, Kaood A. Hydrothermal characteristics of turbulent flow in a tube with solid and perforated conical rings. Int Commun Heat Mass Transf. 2022;134: 106000.

    Article  Google Scholar 

  53. Hashemi Karouei SH, Ajarostaghi SSM, Gorji-Bandpy M, Hosseini Fard SR. Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator. J Therm Anal Calorim. 2021;143:1455–66.

    Article  CAS  Google Scholar 

  54. Hashemian M, Jafarmadar S, Ayed H, Wae-hayee M. Thermal-hydrodynamic and exergetic study of two-phase flow in helically coiled pipe with helical wire insert. Case Stud Therm Eng. 2022;30: 101718.

    Article  Google Scholar 

  55. Wheeler AJ, Ganji AR, Krishnan VV, Thurow BS. Introduction to engineering experimentation. London: Pearson; 2010.

    Google Scholar 

  56. Abu AO. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int J Numer Methods Heat Fluid Flow. 2018;28:828–56.

    Article  Google Scholar 

  57. Abu AO. Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. Int J Numer Methods Heat Fluid Flow. 2020;30:4711–33.

    Article  Google Scholar 

  58. Arqub OA, Al-Smadi M. Numerical solutions of riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm. J Porous Media. 2020;23:783–804.

    Article  Google Scholar 

  59. Arqub OA, Shawagfeh N. Application of reproducing kernel algorithm for solving dirichlet time-fractional diffusion-gordon types equations in porous media. J Porous Media. 2019;22:411–34.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP2024R515), King Saud University, Riyadh, Saudi Arabia, for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Marzouk or Ahmad Aljabr.

Ethics declarations

Conflict of interest

The authors confirm no financial or interpersonal conflicts influencing the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharaf, M.A., Marzouk, S.A., Aljabr, A. et al. Heat transfer enhancement in a double-pipe helical heat exchanger using spring wire insert and nanofluid. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-12992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-12992-1

Keywords

Navigation