Skip to main content
Log in

Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the effect of inserting an innovative curved turbulator and utilizing two types of hybrid nanofluids on thermal performance in a helical double-pipe heat exchanger is evaluated numerically. The considered hybrid nanofluids include silver (Ag) and graphene (HEG) nanoparticles/water and multi-wall carbon nanotubes–iron oxide nanoparticles/water (MWCNT-Fe3O4/water). The considered innovative turbulator has 12 blades to create secondary flows. Also, a hole is considered at the end of the turbulator. The present study has two sections: In the first one, the results of utilizing hybrid nanofluids are compared with pure water (φ = 0.3%). In the second section, the hybrid nanofluid based on the first section was selected and utilized. The effect of the volume concentration of the selected hybrid nanofluid was investigated. Results show that utilizing the present innovative turbulator leads to higher heat transfer rate. As a result, the Ag-HEG/water hybrid nanofluid has better thermal performance at low mass flow rate. Also, the thermal efficiency of the considered helical heat exchanger is lowest at φ = 0.1%. In the case of highest volume concentration (φ = 0.7%), the thermal performance is maximum at low mass flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kareem ZS, Jaafar MM, Lazim TM, Abdullah S, AbdulWahid AF. Heat transfer enhancement in two-start spirally corrugated tube. Alex Eng J. 2015;54(3):415–22.

    Article  Google Scholar 

  2. Min C, Qi C, Wang E, Tian L, Qin Y. Numerical investigation of turbulent flow and heat transfer in a channel with novel longitudinal vortex generators. Int J Heat Mass Transf. 2012;55(23–24):7268–77.

    Article  Google Scholar 

  3. Kumar S, Amano RS, Lucci JM. Numerical simulations of heat transfer distribution of a two-pass square channel with V-rib turbulator and bleed holes. Heat Mass Transf. 2013;49(8):1141–58.

    Article  CAS  Google Scholar 

  4. Zhang C, Wang D, Ren K, Han Y, Zhu Y, Peng X, Deng J, Zhang X. A comparative review of self-rotating and stationary twisted tape inserts in heat exchanger. Renew Sustain Energy Rev. 2016;53:433–49.

    Article  Google Scholar 

  5. Kumar KA, Sugunamma V, Sandeep N. Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. J Therm Anal Calorimet. 2019. https://doi.org/10.1007/s10973-019-08694-8.

    Article  Google Scholar 

  6. Kumar KA, Sugunamma V, Sandeep N. Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet. J Therm Anal Calorimet. 2019. https://doi.org/10.1007/s10973-019-08977-0.

    Article  Google Scholar 

  7. Kumar KA, Sugunamma V, Sandeep N, Mustafa MT. Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink. Sci Rep. 2019;9(1):1–14.

    Article  Google Scholar 

  8. Anantha Kumar K, Sugunamma V, Sandeep N. Physical aspects on unsteady MHD-free convective stagnation point flow of micropolar fluid over a stretching surface. Heat Transf Asian Res. 2019;48(8):3968–85.

    Article  Google Scholar 

  9. Kumar KA, Sugunamma V, Sandeep N. A non-Fourier heat flux model for magnetohydrodynamic micropolar liquid flow across a coagulated sheet. Heat Transf Asian Res. 2019;48(7):2819–43.

    Article  Google Scholar 

  10. Kumar A, Sugunamma V, Sandeep N. Impact of non-linear radiation on MHD non-aligned stagnation point flow of micropolar fluid over a convective surface. J Non-Equilib Thermodyn. 2018;43(4):327–45.

    Article  Google Scholar 

  11. Kumar A, Sugunamma V, Sandeep N. Numerical exploration of MHD radiative Micropolar liquid flow driven by stretching sheet with primary slip: a comparative study. J Non-Equilib Thermodyn. 2019;44(2):101–22.

    Article  Google Scholar 

  12. Ramadevi B, Kumar KA, Sugunamma V, Reddy JR, Sandeep N. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Therm Anal Calorimet. 2019. https://doi.org/10.1007/s10973-019-08477-1.

    Article  Google Scholar 

  13. Sahel D, Ameur H, Benzeguir R, Kamla Y. Enhancement of heat transfer in a rectangular channel with perforated baffles. Appl Therm Eng. 2016;101:156–64.

    Article  Google Scholar 

  14. Kumar A, Kumar M, Chamoli S. Comparative study for thermal-hydraulic performance of circular tube with inserts. Alex Eng J. 2016;55(1):343–9.

    Article  Google Scholar 

  15. Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M. 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Proc. 2014;49:373–80.

    Article  Google Scholar 

  16. Thianpong C, Yongsiri K, Nanan K, Eiamsa-Ard S. Thermal performance evaluation of heat exchangers fitted with twisted-ring turbulators. Int Commun Heat Mass Transf. 2012;39(6):861–8.

    Article  Google Scholar 

  17. Nanan K, Pimsarn M, Thianpong C, Eiamsa-ard S. Heat transfer enhancement by helical screw tape coupled with rib turbulators. J Mech Sci Technol. 2014;28(11):4771–9.

    Article  Google Scholar 

  18. Bali T. Sarac BA Experimental investigation of decaying swirl flow through a circular pipe for binary combination of vortex generators. Int Commun Heat Mass Transf. 2014;53:174–9.

    Article  Google Scholar 

  19. Zohir AE, Abdel Aziz AA, Habib MA. Heat transfer characteristics in a sudden expansion pipe equipped with swirl generators. Int J Heat Fluid Flow. 2011;32(1):352–61.

    Article  Google Scholar 

  20. Eiamsa-ard S, Promvonge P. Experimental investigation of heat transfer and friction characteristics in a circular tube fitted with V-nozzle turbulators. Int Commun Heat Mass Transf. 2006;33(5):591–600.

    Article  CAS  Google Scholar 

  21. Muthusamy C, Vivar M, Skryabin I, Srithar K. Effect of conical cut-out turbulators with internal fins in a circular tube on heat transfer and friction factor. Int Commun Heat Mass Transf. 2013;44:64–8.

    Article  Google Scholar 

  22. Promvonge P, Eiamsa-ard S. Heat transfer and turbulent flow friction in a circular tube fitted with conical-nozzle turbulators. Int Commun Heat Mass Transf. 2007;34(1):72–82.

    Article  CAS  Google Scholar 

  23. Anvari AR, Lotfi R, Rashidi AM, Sattari S. Experimental research on heat transfer of water in tubes with conical ring inserts in transient regime. Int Commun Heat Mass Transf. 2011;38(5):668–71.

    Article  Google Scholar 

  24. Kurtbaş İ, Gülçimen F, Akbulut A, Buran D. Heat transfer augmentation by swirl generators inserted into a tube with constant heat flux. Int Commun Heat Mass Transf. 2009;36(8):865–71.

    Article  Google Scholar 

  25. Adrian B. Convection heat transfer. New York: Wiley; 2013.

    Google Scholar 

  26. Baragh S, Shokouhmand H, Ajarostaghi SSM, Nikian M. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. Int J Therm Sci. 2018;134:370–9.

    Article  Google Scholar 

  27. Baragh S, Shokouhmand H, Ajarostaghi SSM. Experiments on mist flow and heat transfer in a tube fitted with porous media. Int J Therm Sci. 2019;137:388–98.

    Article  Google Scholar 

  28. Shirzad M, Delavar MA, Ajarostaghi SSM, Sedighi K. Evaluation the effects of geometrical parameters on the performance of pillow plate heat exchanger. Chem Eng Res Des. 2019;150:74–83.

    Article  CAS  Google Scholar 

  29. Shirzad M, Ajarostaghi SSM, Delavar MA, Sedighi K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: numerical simulation. Adv Powder Technol. 2019;30(7):1356–65.

    Article  CAS  Google Scholar 

  30. Noorbakhsh M, Zaboli M, Ajarostaghi SSM. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. J Therm Anal Calorimet. 2019. https://doi.org/10.1007/s10973-019-08509-w.

    Article  Google Scholar 

  31. Hamedani FA, Ajarostaghi SSM, Hosseini SA. Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent–divergent tube. J Therm Anal Calorimet. 2019. https://doi.org/10.1007/s10973-019-08765-w.

    Article  Google Scholar 

  32. Moghadam HK, Ajarostaghi SSM, Poncet S. Extensive numerical analysis of the thermal performance of a corrugated tube with coiled wire. J Therm Anal Calorimet. 2019. https://doi.org/10.1007/s10973-019-08876-4.

    Article  Google Scholar 

  33. Olfian H, Zabihi Sheshpoli A, Mousavi Ajarostaghi SS. Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles. Heat Transf Asian Res. https://doi.org/10.1002/htj.21656.

  34. Outokesh M, Mousavi Ajarostaghi SS, Bozorgzadeh A, Sedighi K. Numerical evaluation of the effect of utilizing twisted tape with curved profile as a turbulator on heat transfer enhancement in a pipe. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09336-0.

    Article  Google Scholar 

  35. Schmidt, E.F., 1967. Warmeubergang und druckverlust in Rohrschlangen, Chemie-lng.

  36. Ito H. Friction factors for turbulent flow in curved pipes. J Basic Eng. 1959;81:123–32.

    Article  Google Scholar 

  37. Lim KY, Hung YM, Tan BT. Performance evaluation of twisted-tape insert induced swirl flow in a laminar thermally developing heat exchanger. Appl Therm Eng. 2017;121:652–61.

    Article  Google Scholar 

  38. Zheng N, Liu P, Shan F, Liu J, Liu Z, Liu W. Numerical studies on thermo-hydraulic characteristics of laminar flow in a heat exchanger tube fitted with vortex rods. Int J Therm Sci. 2016;100:448–56.

    Article  Google Scholar 

  39. Guo J, Fan A, Zhang X, Liu W. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. Int J Therm Sci. 2011;50(7):1263–70.

    Article  Google Scholar 

  40. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  41. Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6:147059.

    Article  Google Scholar 

  42. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  43. Sundar LS, Venkata Ramana E, Graca MPF, Singh MK, Sousa AC. Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transf. 2016;73:62–74.

    Article  CAS  Google Scholar 

  44. Ho CJ, Huang JB, Tsai PS, Yang YM. Preparation and properties of hybrid water based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transf. 2010;37:490–4.

    Article  CAS  Google Scholar 

  45. Batchelor BGK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  46. Akiyama M, Cheng KC. Laminar forced convection heat transfer in curved pipes with uniform wall temperature. Int J Heat Mass Transf. 1972;15:1426–31.

    Article  Google Scholar 

  47. Sinz C, Woei H, Khalis M, Abbas SA. Numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circular channel with constant heat flux. J Adv Res Fluid Mech Therm Sci. 2016;24(1):1–11.

    Google Scholar 

  48. Zainal S, Tan C, Sian CJ, Siang TJ. ANSYS simulation for Ag/HEG hybrid nanofluid in turbulent circular pipe. J Adv Res Appl Mech. 2016;23:20–35.

    Google Scholar 

  49. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Soheil Mousavi Ajarostaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi Karouei, S.H., Ajarostaghi, S.S.M., Gorji-Bandpy, M. et al. Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator. J Therm Anal Calorim 143, 1455–1466 (2021). https://doi.org/10.1007/s10973-020-09425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09425-0

Keywords

Navigation