Skip to main content
Log in

Synthesize of exfoliated poly-methylmethacrylate/organomontmorillonite nanocomposites by in situ polymerization: structural study, thermal properties and application for removal of azo dye pollutant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports the synthesis of exfoliated structure of Poly-methylmethacrylate/organomontmorillonite nanocomposites by in situ polymerization of Methylmethacrylate monomer as a cost-effective adsorbent for ultrahigh removal of azo dye pollutant from aqueous media. The obtained nanocomposites with different organoclay loading (1–7 mass%) were characterized by XRD, FTIR, DTA, TGA, TEM and SEM. In the XRD results, the observation of small pick shoulders (d001) and almost no reflection in the X-ray diffractrograms indicated, respectively, the establishment of intercalated/exfoliated structures and major exfoliation of OMMT clay into polymer. This observation was supported by TEM microscopy. TGA results revealed improved thermal properties in comparison with the pure polymer. Adsorption parameters such as pH-value, contact time and initial dye concentration were investigated to assess optimum adsorption activity. The adsorption experiments showed that the equilibrium time of adsorption was reached very rapidly. According to the kinetic study, the adsorption process followed pseudo-second-order model. The adsorption capacity is unaffected by variation of solution pH. The high maximum adsorption capacity of PMMA/OMT nanocomposite toward dye was found to be 309.6 mg g−1. Langmuir isotherm was more suitable model to describe the adsorption of dye than Freundlich and Dubinin–Radushkevich models. Thermodynamic study showed that the removal of the azo dye from aqueous solution by PMMA/OMT nanocomposite is endothermic nature, spontaneous and physisorption process. Under three adsorption–desorption cycles, PMMA/OMT nanocomposite had good re-adsorption effect. Thus, PMMA/OMT nanocomposite can be an efficient and recyclable adsorbent for azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev. 2015;55:678–705.

    Article  CAS  Google Scholar 

  2. Nikolaidis AK, Achilias DS, Karayannidis GP. Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur Polym J. 2012;48:240–51. https://doi.org/10.1016/j.eurpolymj.2011.11.004.

    Article  CAS  Google Scholar 

  3. Rajabi M, Mahanpoor K, Moradi O. Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: kinetic and thermodynamic studies. Compos Part B. 2019;167:544–55. https://doi.org/10.1016/j.compositesb.2019.03.030.

    Article  CAS  Google Scholar 

  4. Barwood MJ, Breen C, Clegg F, Hammond CL. The effect of organoclay addition on the properties of an acrylate based, thermally activated shape memory polymer. Appl Clay Sci. 2014;102:41–50. https://doi.org/10.1016/j.clay.2014.10.010.

    Article  CAS  Google Scholar 

  5. Cui L, Tarte NH, Woo SI. Effects of modified clay on the morphology and properties of PMMA/clay nanocomposites synthesized by in situ polymerization. Macromolecules. 2008;41:4268–74.

    Article  ADS  CAS  Google Scholar 

  6. Wang X, Su Q, Hu Y, Wang C, Zheng J. Structure and thermal stability of PMMA/MMT nanocomposites as denture base material. J Therm Anal Calorim. 2014;115:1143–51.

    Article  CAS  Google Scholar 

  7. Melouki A, Terchi S, Ouali D, Bounab A. Preparation of new copolymer (polystyrene/TMSPM grafted on DDA-fractionated algerian montmorillonite) hybrid organoclay by radical copolymerization: structural study, thermal stability and hydrophobicity area. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10935-8.

    Article  Google Scholar 

  8. Zhao Q, Samulski ET. In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide. Macromolecules. 2005;38:7967–71.

    Article  ADS  CAS  Google Scholar 

  9. Hegyesi N, Pongrácz S, Vad RT, Pukánszky B. Coupling of PMMA to the surface of a layered silicate by intercalative polymerization: processes, structure and properties. Colloids Surf A Physicochem Eng Asp. 2020;601:124979. https://doi.org/10.1016/j.colsurfa.2020.124979.

    Article  CAS  Google Scholar 

  10. Prado BR, Bartoli JR. Synthesis and characterization of PMMA and organic modified montmorilonites nanocomposites via in situ polymerization assisted by sonication. Appl Clay Sci. 2018;160:132–43. https://doi.org/10.1016/j.clay.2018.02.035.

    Article  CAS  Google Scholar 

  11. Qin X, Wu Y, Wang K, Tan H, Nie J. In-situ synthesis of exfoliated nanocomposites by photopolymerization using a novel montmorillonite-anchored initiator. Appl Clay Sci. 2009;45:133–8. https://doi.org/10.1016/j.clay.2009.04.014.

    Article  CAS  Google Scholar 

  12. Li P, Khan MA, Xia M, Lei W, Zhu S, Wang F. Efficient preparation and molecular dynamic (MD) simulations of Gemini surfactant modified layered montmorillonite to potentially remove emerging organic contaminants from wastewater. Ceram Int. 2019;45:10782–91. https://doi.org/10.1016/j.ceramint.2019.02.152.

    Article  CAS  Google Scholar 

  13. Andrade M, Nelson S, Larocca M, Antonio L. Highly thermal stable organoclays of ionic liquids and silane organic modifiers and effect of montmorillonite source. J Therm Anal Calorim. 2016;126:499–509.

    Article  Google Scholar 

  14. Youssef AM, Malhat FM, Abdel Hakim AA, Dekany I. Synthesis and utilization of poly (methylmethacrylate) nanocomposites based on modified montmorillonite. Arab J Chem. 2017;10:631–42. https://doi.org/10.1016/j.arabjc.2015.02.017.

    Article  CAS  Google Scholar 

  15. Valandro SR, Lombardo PC, Poli AL, Horn MA, Neumann MG, Cavalheiro CCS. Thermal properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites obtained by in situ photopolymerization. Mater Res. 2014;17:265–70.

    Article  CAS  Google Scholar 

  16. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. J Environ Manage. 2016;182:351–66. https://doi.org/10.1016/j.jenvman.2016.07.090.

    Article  CAS  PubMed  Google Scholar 

  17. Shenouda SS, Hussien MSA, Parditka B, Csík A, Takats V, Erdélyi Z. Novel amorphous Al-rich Al2O3 ultra-thin films as active photocatalysts for water treatment from some textile dyes. Ceram Int. 2020;46:7922–9. https://doi.org/10.1016/j.ceramint.2019.12.012.

    Article  CAS  Google Scholar 

  18. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZIH, Bhatti HN, et al. Dyes adsorption using clay and modified clay: a review. J Mol Liq. 2018;256:395–407. https://doi.org/10.1016/j.molliq.2018.02.034.

    Article  CAS  Google Scholar 

  19. Li N, Yang B, Xu L, Xu G, Sun W, Yu S. Simple synthesis of Cu2O/Na-bentonite composites and their excellent photocatalytic properties in treating methyl orange solution. Ceram Int. 2016;42:5979–84. https://doi.org/10.1016/j.ceramint.2015.12.145.

    Article  CAS  Google Scholar 

  20. Samchetshabam G, Hussan A, Choudhury TG, Gita S. Impact of textile dyes waste on aquatic environments and its treatment wastewater management view project tribal sub plan view project. Environ Ecol. 2017;35:2349–53.

    Google Scholar 

  21. Sivaraj D, Vijayalakshmi K, Srinivasan M, Ramasamy P. Graphene oxide reinforced bismuth titanate for photocatalytic degradation of azo dye (DB15) prepared by hydrothermal method. Ceram Int. 2021;47:25074–80. https://doi.org/10.1016/j.ceramint.2021.05.238.

    Article  CAS  Google Scholar 

  22. Ben Dassi R, Chamam B, Méricq JP, Heran M, Faur C, El Mir L, et al. Pb doped ZnO nanoparticles for the sorption of reactive black 5 textile azo dye. Water Sci Technol. 2020;82:2576–91.

    Article  PubMed  Google Scholar 

  23. Heibati B, Rodriguez-Couto S, Amrane A, Rafatullah M, Hawari A, Al-Ghouti MA. Uptake of Reactive Black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms. J Ind Eng Chem. 2014;20:2939–47. https://doi.org/10.1016/j.jiec.2013.10.063.

    Article  CAS  Google Scholar 

  24. Raj S, Singh H, Bhattacharya J. Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: process studies in an industrial ecology concept. Sci Total Environ. 2023;857:159464. https://doi.org/10.1016/j.scitotenv.2022.159464.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Khemila B, Merzouk B, Chouder A, Zidelkhir R, Leclerc J. Removal of a textile dye using photovoltaic electrocoagulation. Sustain Chem Pharm. 2018;7:27–35. https://doi.org/10.1016/j.scp.2017.11.004.

    Article  Google Scholar 

  26. Belayachi-Haddad A, Benderdouche N, Bestani B, Duclaux L. Synthetic textile wastewater treatment: removal of Nylosan (N-2RBL) dye by electrocoagulation. Desalin Water Treat. 2017;63:78–86.

    Article  CAS  Google Scholar 

  27. Raza N, Raza W, Gul H, Kim KH. ZnO–ZnTe hierarchical superstructures as solar-light-activated photocatalysts for azo dye removal. Environ Res. 2021;194:110499. https://doi.org/10.1016/j.envres.2020.110499.

    Article  CAS  PubMed  Google Scholar 

  28. Chakraborty A, Ruzimuradov O, Gupta RK, Cho J, Prakash J. TiO2 nanoflower photocatalysts: synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environ Res. 2022;212:113550. https://doi.org/10.1016/j.envres.2022.113550.

    Article  CAS  PubMed  Google Scholar 

  29. Chankhanittha T, Komchoo N, Senasu T, Piriyanon J, Youngme S, Hemavibool K, et al. Silver decorated ZnO photocatalyst for effective removal of reactive red azo dye and ofloxacin antibiotic under solar light irradiation. Colloids Surf A Physicochem Eng Asp. 2021;626:127034. https://doi.org/10.1016/j.colsurfa.2021.127034.

    Article  CAS  Google Scholar 

  30. Ghaemi N, Madaeni SS, Daraei P, Rajabi H, Shojaeimehr T, Rahimpour F, et al. PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: fabrication and performance optimization in dye removal by RSM. J Hazard Mater. 2015;298:111–21. https://doi.org/10.1016/j.jhazmat.2015.05.018.

    Article  CAS  PubMed  Google Scholar 

  31. Ouachtak H, El Guerdaoui A, Haounati R, Akhouairi S, El Haouti R, Hafid N, et al. Highly efficient and fast batch adsorption of orange G dye from polluted water using superb organo-montmorillonite: experimental study and molecular dynamics investigation. J Mol Liq. 2021;335: 116560.

    Article  CAS  Google Scholar 

  32. Joshiba GJ, Kumar PS, Rangasamy G, Ngueagni PT, Pooja G, Balji GB, et al. Iron doped activated carbon for effective removal of tartrazine and methylene Blue dye from the aquatic systems: kinetics, isotherms, thermodynamics and desorption studies. Environ Res. 2022;215:114317. https://doi.org/10.1016/j.envres.2022.114317.

    Article  CAS  PubMed  Google Scholar 

  33. Ullah F, Ji G, Irfan M, Gao Y, Shafiq F, Sun Y, et al. Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis. Environ Pollut. 2022;314:120271. https://doi.org/10.1016/j.envpol.2022.120271.

    Article  CAS  PubMed  Google Scholar 

  34. Reffas A, Bernardet V, David B, Reinert L, Lehocine MB, Dubois M, et al. Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene Blue and Nylosan Red N-2RBL. J Hazard Mater. 2010;175:779–88.

    Article  CAS  PubMed  Google Scholar 

  35. Ngeno EC, Mbuci KE, Necibi MC, Shikuku VO, Olisah C, Ongulu R, et al. Sustainable re-utilization of waste materials as adsorbents for water and wastewater treatment in Africa: recent studies, research gaps, and way forward for emerging economies. Environ Adv. 2022;9:100282.

    Article  CAS  Google Scholar 

  36. Tee GT, Gok XY, Yong WF. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: a review. Environ Res. 2022;212:113248. https://doi.org/10.1016/j.envres.2022.113248.

    Article  CAS  PubMed  Google Scholar 

  37. Ouldmoumna A, Benderdouche N, Reinert L, Bestani B, Duclaux L. Adsorption of red nylosane solution on natural materials. Desalin Water Treat. 2017;65:304–12.

    Article  CAS  Google Scholar 

  38. Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. Environ Res. 2022;204:111965. https://doi.org/10.1016/j.envres.2021.111965.

    Article  CAS  PubMed  Google Scholar 

  39. Terchi S, Ladjal N, Zidelkheir B, Bachari K. Adsorption performance of anionic textile dye (Nylosan red n-2rbl) onto raw, sodic and fractionated sodic inorganic clay material. Rev Roum Chim. 2020;65:869–84.

    Article  Google Scholar 

  40. Karakuş S, Taşaltın N, Taşaltın C, Kilislioğlu A. Comparative study on ultrasonic assisted adsorption of Basic Blue 3, Basic Yellow 28 and Acid Red 336 dyes onto hydromagnesite stromatolite: kinetic, isotherm and error analysis. Surf Interfaces. 2020;20:100528. https://doi.org/10.1016/j.surfin.2020.100528.

    Article  CAS  Google Scholar 

  41. Zhu Y, Cui Y, Peng Y, Dai R, Chen H, Wang Y. Preparation of CTAB intercalated bentonite for ultrafast adsorption of anionic dyes and mechanism study. Colloids Surf A Physicochem Eng Asp. 2023;658:130705. https://doi.org/10.1016/j.colsurfa.2022.130705.

    Article  CAS  Google Scholar 

  42. Mallakpour S, Hatami M. An effective, low-cost and recyclable bio-adsorbent having amino acid intercalated LDH@Fe3O4/PVA magnetic nanocomposites for removal of methyl orange from aqueous solution. Appl Clay Sci. 2019;174:127–37. https://doi.org/10.1016/j.clay.2019.03.026.

    Article  CAS  Google Scholar 

  43. Minisy IM, Salahuddin NA, Ayad MM. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl Clay Sci. 2021;203:105993. https://doi.org/10.1016/j.clay.2021.105993.

    Article  CAS  Google Scholar 

  44. Ulu A, Alpaslan M, Gultek A, Ates B. Eco-friendly chitosan/κ-carrageenan membranes reinforced with activated bentonite for adsorption of methylene blue. Mater Chem Phys. 2022;278:125611.

    Article  CAS  Google Scholar 

  45. Ladjal N, Zidelkheir B, Terchi S. Influence of octadecylammonium, N,N-dimethylhexadecylammonium, and 1-hexadecyltrimethylammonium chloride upon the fractionated montmorillonite. J Therm Anal Calorim. 2018;134:881–8. https://doi.org/10.1007/s10973-018-7237-4.

    Article  CAS  Google Scholar 

  46. Fu X, Qutubuddin S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer (Guildf). 2001;42:807–13.

    Article  CAS  Google Scholar 

  47. Kowalczyk K, Spychaj T, Ubowska A, Schmidt B. Industrially applicable methods of poly(methyl methacrylate)/organophilic montmorillonite nanocomposites preparation: processes and cast materials characterization. Appl Clay Sci. 2014;97–98:96–103. https://doi.org/10.1016/j.clay.2014.05.011.

    Article  CAS  Google Scholar 

  48. Valandro SR, Poli AL, Neumann MG, Schmitt CC. Organomontmorillonite/poly(methyl methacrylate) nanocomposites prepared by in situ photopolymerization. Effect of the organoclay on the photooxidative degradation. Appl Clay Sci. 2013;85:19–24. https://doi.org/10.1016/j.clay.2013.08.050.

    Article  CAS  Google Scholar 

  49. Tsai TY, Lin MJ, Chuang YC, Chou PC. Effects of modified clay on the morphology and thermal stability of PMMA/clay nanocomposites. Mater Chem Phys. 2013;138:230–7. https://doi.org/10.1016/j.matchemphys.2012.11.051.

    Article  CAS  Google Scholar 

  50. Morgan AB, Gilman JW. Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci. 2002;87:1329–38.

    Article  Google Scholar 

  51. Hirata T, Kashiwagi T, Brown JE. Thermal and oxidative degradation of poly(methyl methacrylate): weight loss. Macromolecules. 1985;18:1410–8.

    Article  ADS  CAS  Google Scholar 

  52. McNeill IC. A study of the thermal degradation of methyl methacrylate polymers and copolymers by thermal volatilization analysis. Eur Polym J. 1968;4:21–30.

    Article  CAS  Google Scholar 

  53. Temuujin J, Jadambaa T, Burmaa G, Erdenechimeg S, Amarsanaa J, MacKenzie KJD. Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram Int. 2004;30:251–5.

    Article  CAS  Google Scholar 

  54. Mishra AK, Allauddin S, Narayan R, Aminabhavi TM, Raju KVSN. Characterization of surface-modified montmorillonite nanocomposites. Ceram Int. 2012;38:929–34. https://doi.org/10.1016/j.ceramint.2011.08.012.

    Article  CAS  Google Scholar 

  55. Liu Y, Lee JY, Hong L. Synthesis, characterization and electrochemical properties of poly(methyl methacrylate)-grafted-poly(vinylidene fluoride-hexafluoropropylene) gel electrolytes. Solid State Ion. 2002;150:317–26.

    Article  CAS  Google Scholar 

  56. Kuo SW, Kao HC, Chang FC. Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer. Polymer (Guildf). 2003;44:6873–82.

    Article  CAS  Google Scholar 

  57. Ahsani-Namin Z, Norouzbeigi R, Shayesteh H. Green mediated combustion synthesis of copper zinc oxide using Eryngium planum leaf extract as a natural green fuel: excellent adsorption capacity towards Congo red dye. Ceram Int. 2022;48:20961–73. https://doi.org/10.1016/j.ceramint.2022.04.090.

    Article  CAS  Google Scholar 

  58. Kiranşan M, Soltani RDC, Hassani A, Karaca S, Khataee A. Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. J Taiwan Inst Chem Eng. 2014;45:2565–77.

    Article  Google Scholar 

  59. Safarzadeh H, Peighambardoust SJ, Mousavi SH, Foroutan R, Mohammadi R, Peighambardoust SH. Adsorption ability evaluation of the poly(methacrylic acid-co-acrylamide)/cloisite 30B nanocomposite hydrogel as a new adsorbent for cationic dye removal. Environ Res. 2022;212:113349. https://doi.org/10.1016/j.envres.2022.113349.

    Article  CAS  PubMed  Google Scholar 

  60. da Silva MA, Dias DDS, Capela JMV, Fertonani IAP, Ribeiro CA. Biochar from Pine cone (strobilus of Pinus elliottii) by torrefaction process: evaluation of the adsorptive and energy capacity. J Therm Anal Calorim. 2023;148:12321–33. https://doi.org/10.1007/s10973-023-12461-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ST was contributed to elaboration, characterization, methodology, data curation, investigation, writing—review and editing. SH was contributed to methodology, data curation, writing—review and editing. NL was contributed to elaboration, characterization, data curation. KB was contributed to characterization. HBR was contributed to characterization.

Corresponding author

Correspondence to Smail Terchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terchi, S., Hamrit, S., Ladjal, N. et al. Synthesize of exfoliated poly-methylmethacrylate/organomontmorillonite nanocomposites by in situ polymerization: structural study, thermal properties and application for removal of azo dye pollutant. J Therm Anal Calorim 149, 2161–2177 (2024). https://doi.org/10.1007/s10973-023-12810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12810-0

Keywords

Navigation