Skip to main content
Log in

Preparation and characterization of poly(acrylic acid-co-acrylamide)/montmorillonite composite and its application for methylene blue adsorption

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of poly(acrylic acid-co-acrylamide)/montmorillonite composite (poly(AA-co-AM)/MMT) was prepared by radical polymerization. The composite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD). Batch adsorption experiments of methylene blue (MB) from aqueous solutions were carried out with poly(AA-co-AM)/MMT composite. The effects of montmorillonite (MMT) content, initial pH of MB solutions, adsorption temperature, and ionic strength on the adsorption were investigated. Furthermore, the adsorption kinetics and isotherms were studied by analyzing the effect of adsorption time and initial MB concentration on the adsorption capacity. The results indicated that the addition of a small amount of MMT could improve the adsorption capacity of the poly(AA-co-AM). The maximum adsorption capacity of poly (AA-co-AM)/MMT (2%) composite was 1964.1 mg g−1. The adsorption kinetics were in good agreement with the pseudo-second-order equation, and the adsorption isotherms were better fitted for the Langmuir equation. In addition, desorption studies show that the composites have good regenerative properties. The experimental results show that the poly(AA-co-AM)/MMT can be used as promising adsorbent for the removal of MB from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu F, Zou H, Hu J, Liu H, Peng J, Chen Y, Lu F, Huo Y (2016) Fast removal of methylene blue from aqueous solution using porous soy protein isolate based composite beads. Chem Eng J 287:410–418. https://doi.org/10.1016/j.cej.2015.11.041

    Article  CAS  Google Scholar 

  2. Zhuang X, Wan Y, Feng C, Shen Y, Zhao D (2009) Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem Mater 21(4):706–716. https://doi.org/10.1021/cm8028577

    Article  CAS  Google Scholar 

  3. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1–3):70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  Google Scholar 

  4. Gong RM, Ding Y, Lie M, Yang C, Liu HJ, Sun YZ (2005) Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments 64(3):187–192. https://doi.org/10.1016/j.dyepig.2004.05.05

    Article  CAS  Google Scholar 

  5. Ghosh D, Bhattacharyya KG (2002) Adsorption of methylene blue on kaolinite. Appl Clay Sci 20(6):295–300. https://doi.org/10.1016/s0169-1317(01)00081-3

    Article  CAS  Google Scholar 

  6. Ma ZW, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 265(1–2):115–123. https://doi.org/10.1016/j.memsci.2005.04.044

    Article  CAS  Google Scholar 

  7. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  CAS  Google Scholar 

  8. Martinez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B-Environmental 87(3–4):105–145. https://doi.org/10.1016/j.apcatb.2008.09.017

    Article  CAS  Google Scholar 

  9. Hu E, Wu X, Shang S, Tao X-M, Jiang S-X, Gan L (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718. https://doi.org/10.1016/j.jclepro.2015.06.127

    Article  CAS  Google Scholar 

  10. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  11. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193:24–34. https://doi.org/10.1016/j.cis.2013.03.003

    Article  Google Scholar 

  12. Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resources Conservation and Recycling 118:13–26. https://doi.org/10.1016/j.resconrec.2016.11.016

    Article  Google Scholar 

  13. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    Article  CAS  Google Scholar 

  14. Hui B, Zhang Y, Ye L (2014) Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chem Eng J 235:207–214. https://doi.org/10.1016/j.cej.2013.09.045

    Article  CAS  Google Scholar 

  15. Alvarez-Lorenzo C, Concheiro A (2002) Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. J Control Release 80(1–3):247–257. https://doi.org/10.1016/s0168-3659(02)00032-9

    Article  CAS  Google Scholar 

  16. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16):1120–1124. https://doi.org/10.1002/1521-4095(20020816)14:16<1120::aid-adma1120>3.0.co;2-9

    Article  CAS  Google Scholar 

  17. Choy J-H, Choi S-J, Oh J-M, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36(1–3):122–132. https://doi.org/10.1016/j.clay.2006.07.007

    Article  CAS  Google Scholar 

  18. Xue G, Gao M, Gu Z, Luo Z, Hu Z (2013) The removal of p-nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites. Chem Eng J 218:223–231. https://doi.org/10.1016/j.cej.2012.12.045

    Article  CAS  Google Scholar 

  19. Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258. https://doi.org/10.1016/j.clay.2015.12.024

    Article  CAS  Google Scholar 

  20. Chang J, Ma J, Ma Q, Zhang D, Qiao N, Hu M, Ma H (2016) Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl Clay Sci 119:132–140. https://doi.org/10.1016/j.clay.2015.06.038

    Article  CAS  Google Scholar 

  21. Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70(4):1163–1179. https://doi.org/10.1007/s00289-012-0898-4

    Article  CAS  Google Scholar 

  22. Marrakchi F, Khanday WA, Asif M, Hameed BH (2016) Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int J Biol Macromol 93(Pt A):1231–1239. https://doi.org/10.1016/j.ijbiomac.2016.09.069

    Article  CAS  Google Scholar 

  23. Shirsath SR, Patil AP, Bhanvase BA, Sonawane SH (2015) Ultrasonically prepared poly(acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. Journal of Environmental Chemical Engineering 3(2):1152–1162. https://doi.org/10.1016/j.jece.2015.04.016

    Article  CAS  Google Scholar 

  24. Ayazi Z, Khoshhesab ZM, Azhar FF, Mohajeri Z (2017) Modeling and optimization of adsorption removal of reactive Orange 13 on the alginate-montmorillonite-polyaniline nanocomposite via response surface methodology. J Chin Chem Soc 64(6):627–639. https://doi.org/10.1002/jccs.201600876

    Article  CAS  Google Scholar 

  25. Zhu L, Zhang L, Tang Y (2012) Synthesis of montmorillonite/poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid) superabsorbent composite and the study of its adsorption. Bull Korean Chem Soc 33(5):1669–1674. https://doi.org/10.5012/bkcs.2012.33.5.1669

    Article  CAS  Google Scholar 

  26. Li S, Zhang H, Feng J, Xu R, Liu X (2011) Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Desalination 280(1–3):95–102. https://doi.org/10.1016/j.desal.2011.06.056

    Article  CAS  Google Scholar 

  27. Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22(4):486–493. https://doi.org/10.1016/s1001-0742(09)60134-0

    Article  CAS  Google Scholar 

  28. Andrini L, Moreira Toja R, Gauna MR, Conconi MS, Requejo FG, Rendtorff NM (2017) Extended and local structural characterization of a natural and 800 degrees C fired Na-montmorillonite-Patagonian bentonite by XRD and al/Si XANES. Appl Clay Sci 137:233–240. https://doi.org/10.1016/j.clay.2016.12.030

    Article  CAS  Google Scholar 

  29. Morgan AB, Gilman JW (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87(8):1329–1338. https://doi.org/10.1002/app.11884

    Article  CAS  Google Scholar 

  30. Mansoori Y, Atghia SV, Zamanloo MR, Imanzadeh G, Sirousazar M (2010) Polymer-clay nanocomposites: free-radical grafting of polyacrylamide onto organophilic montmorillonite. Eur Polym J 46(9):1844–1853. https://doi.org/10.1016/j.eurpolymj.2010.07.006

    Article  CAS  Google Scholar 

  31. Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322(1–3):47–53. https://doi.org/10.1016/j.colsurfa.2008.02.019

    Article  CAS  Google Scholar 

  32. Wang L, Zhang J, Wang A (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination 266(1–3):33–39. https://doi.org/10.1016/j.desal.2010.07.065

    Article  CAS  Google Scholar 

  33. Inbaraj BS, Chiu CP, Ho GH, Yang J, Chen BH (2006) Removal of cationic dyes from aqueous solution using an anionic poly-gamma-glutamic acid-based adsorbent. J Hazard Mater 137(1):226–234. https://doi.org/10.1016/j.jhazmat.2006.01.057

    Article  CAS  Google Scholar 

  34. Liu Y, Zheng Y, Wang A (2011) Effect of biotite content of hydrogels on enhanced removal of methylene blue from aqueous solution. Ionics 17(6):535–543. https://doi.org/10.1007/s11581-011-0552-4

    Article  CAS  Google Scholar 

  35. Panic VV, Velickovic SJ (2014) Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Sep Purif Technol 122:384–394. https://doi.org/10.1016/j.seppur.2013.11.025

    Article  CAS  Google Scholar 

  36. Mittal H, Maity A, Ray SS (2015) Gum ghatti and poly(acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties. Polym Degrad Stab 120:42–52. https://doi.org/10.1016/j.polymdegradstab.2015.06.008

    Article  CAS  Google Scholar 

  37. Hamdaoui O (2006) Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater 135(1–3):264–273. https://doi.org/10.1016/j.jhazmat.2005.11.062

    Article  CAS  Google Scholar 

  38. Zhou CJ, Wu QL, Lei TZ, Negulescu JI (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24. https://doi.org/10.1016/j.cej.2014.04.034

    Article  CAS  Google Scholar 

  39. Liu X, Wei Q (2016) Removal of methylene blue from aqueous solution using porous starch-g-poly(acrylic acid) superadsorbents. RSC Adv 6(83):79853–79858. https://doi.org/10.1039/c6ra14903k

    Article  CAS  Google Scholar 

  40. Vaz MG, Pereira AGB, Fajardo AR, Azevedo ACN, Rodrigues FHA (2017) Methylene blue adsorption on chitosan-g-poly(acrylic acid)/rice husk ash superabsorbent composite: kinetics, equilibrium, and thermodynamics. Water Air Soil Pollut 228(1). https://doi.org/10.1007/s11270-016-3185-4

  41. Wu FC, Tseng RL, Juang RS (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J Colloid Interface Sci 283(1):49–56. https://doi.org/10.1016/j.jcis.2004.08.037

    Article  CAS  Google Scholar 

  42. Horsfall Jr M, Vicente JL (2007) Kinetic study of liquid-phase adsorptive removal of heavy metal ions by almond tree (Terminalia catappa L.) leaves waste. Bull Chem Soc Ethiop 21(3):349–362

    CAS  Google Scholar 

  43. Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74(1):34–40. https://doi.org/10.1016/j.dyepig.2006.01.027

    Article  CAS  Google Scholar 

  44. Oladipo AA, Gazi M, Saber-Samandari S (2014) Adsorption of anthraquinone dye onto eco-friendly semi-IPN biocomposite hydrogel: equilibrium isotherms, kinetic studies and optimization. J Taiwan Inst Chem Eng 45(2):653–664. https://doi.org/10.1016/j.jtice.2013.07.013

    Article  CAS  Google Scholar 

  45. Daneshvar E, Kousha M, Jokar M, Koutahzadeh N, Guibal E (2012) Acidic dye biosorption onto marine brown macroalgae: isotherms, kinetic and thermodynamic studies. Chem Eng J 204:225–234. https://doi.org/10.1016/j.cej.2012.07.090

    Article  Google Scholar 

  46. Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75. https://doi.org/10.1016/j.ijbiomac.2014.11.002

    Article  CAS  Google Scholar 

  47. Li R, Liu L, Yang F (2014) Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane. J Hazard Mater 280:20–30. https://doi.org/10.1016/j.jhazmat.2014.07.052

    Article  CAS  Google Scholar 

  48. Mall ID, Srivastava VC, Kumar GVA, Mishra IM (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf A Physicochem Eng Asp 278(1–3):175–187. https://doi.org/10.1016/j.colsurfa.2005.12.017

    Article  CAS  Google Scholar 

  49. Zhang J, Azam MS, Shi C, Huang J, Yan B, Liu Q, Zeng H (2015) Poly(acrylic acid) functionalized magnetic graphene oxide nanocomposite for removal of methylene blue. RSC Adv 5(41):32272–32282. https://doi.org/10.1039/c5ra01815c

    Article  CAS  Google Scholar 

  50. Hamoud MA, Allan KF, Sanad WA, El-Hamouly SH, Ayoub RR (2014) Gamma irradiation induced preparation of poly(acrylamide-itaconic acid)/zirconium hydrous oxide for removal of Cs-134 radionuclide and methylene blue. J Radioanal Nucl Chem 302(1):169–178. https://doi.org/10.1007/s10967-014-3206-y

    Article  CAS  Google Scholar 

  51. Wan XY, Zhan YQ, Long ZH, Zeng GY, He Y (2017) Core@double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chem Eng J 330:491–504. https://doi.org/10.1016/j.cej.2017.07.178

    Article  CAS  Google Scholar 

  52. Nekouei F, Nekouei S, Keshtpour F, Noorizadeh H, Wang S (2017) Cr(OH)(3)-NPs-CNC hybrid nanocomposite: a sorbent for adsorptive removal of methylene blue and malachite green from solutions. Environ Sci Pollut Res 24(32):25291–25308. https://doi.org/10.1007/s11356-017-0111-2

    Article  CAS  Google Scholar 

  53. Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192(3):1515–1524. https://doi.org/10.1016/j.jhazmat.2011.06.068

    Article  CAS  Google Scholar 

  54. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290. https://doi.org/10.1016/j.jhazmat.2011.10.041

    Article  CAS  Google Scholar 

Download references

Funding

We would like to thank the University of Fuzhou (School of Chemistry) for its financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Xu, Z., Han, F. et al. Preparation and characterization of poly(acrylic acid-co-acrylamide)/montmorillonite composite and its application for methylene blue adsorption. Colloid Polym Sci 296, 653–667 (2018). https://doi.org/10.1007/s00396-018-4277-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4277-z

Keywords

Navigation