Skip to main content
Log in

Colloidal stability, pyrolysis properties and kinetics studies of calcium-containing detergents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Demetallization pretreatment is of great significance for the re-refining of used lubricating oil (ULO) by catalytic hydrogenation. Calcium-containing detergents colloidal stability, pyrolysis properties and kinetics studies have great significance for the demetallization pretreatment, re-refining, and resource utilization of ULO. The present study is focused on the pyrolysis mechanism and determining an accurate pyrolysis kinetic model for the removal of calcium from ULO using vulcanized calcium alkylphenolate (T-115B) colloidal as a model compound. Colloidal stability, pyrolysis process and thermal decomposition products have been studied by DLS, TEM, FTIR spectroscopy and XPS. The reaction energy for primary and secondary dissociation is calculated using the B3LYP-D3(BJ)/6-31g* method. The pyrolysis characteristics at different heating rates have been investigated by TG/DTA, and based on iso-conversional and master plot methods, \(E\) and kinetic equation have been determined, which revealed that the process can be divided into two distinct phases and the pyrolysis mechanism and function are necessarily described by a two-step model. The colloid was relatively stable when the temperature is lower than 395 K. When the temperature rises, compounds occur thermal decomposition, alkyl-CH2–S bond may be the trigger bond in the initiation process, and CaCO3 is the main degradation product. Based on iso-conversional methods (KAS and FWO) and master plot methods, values of \(E\) are determined as 96.67 and 100.78 kJ mol−1, respectively. And the pyrolysis reaction in stage 1 indicated that the most probable kinetic model followed an Fn mechanism with n = 1.39, and the second stage was also controlled by an Fn mechanism, but with n = 0.86.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guerin TF. Environmental liability and life-cycle management of used lubricating oils. J Hazard Mater. 2008;160(2):256–64. https://doi.org/10.1016/j.jhazmat.2008.03.029.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Klusmeier W, Ohrbach KH, Kühn P, Kettrup A. Investigations into the thermal decomposition of the pesticides metoxuron and chloridazon. J Anal Appl Pyrol. 1989;16(3):213–9. https://doi.org/10.1016/0165-2370(89)80025-7.

    Article  CAS  Google Scholar 

  3. Pinheiro CT, Ascensão VR, Cardoso CM, Quina MJ, Gando-Ferreira LM. An overview of waste lubricant oil management system: physicochemical characterization contribution for its improvement. J Clean Prod. 2017;150:301–8.

    Article  CAS  Google Scholar 

  4. Wang J, Zhang B, Zhong Z, Ding K, Deng A, Min M, Chen P, Ruan R. Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: analytical PY-GC/MS study. Energy Convers Manag. 2017;139:222–31. https://doi.org/10.1016/j.enconman.2017.02.047.

    Article  CAS  Google Scholar 

  5. Wetwatana U, Kim-Lohsoontorn P, Assabumrungrat S, Laosiripojana N. Catalytic steam and autothermal reforming of used lubricating oil (ULO) over Rh- and Ni-based catalysts. Ind Eng Chem Res. 2010;49(21):10981–5. https://doi.org/10.1021/ie1004288.

    Article  CAS  Google Scholar 

  6. Tur E, Onal-Ulusoy B, Akdogan E, Mutlu M. Surface modification of polyethersulfone membrane to improve its hydrophobic characteristics for waste frying oil filtration: radio frequency plasma treatment. J Appl Polym Sci. 2012;123(6):3402–11. https://doi.org/10.1002/app.34400.

    Article  CAS  Google Scholar 

  7. Zubaidy EAH, Abouelnasr DM. Fuel recovery from waste oily sludge using solvent extraction. Process Saf Environ Prot. 2010;88(5):318–26. https://doi.org/10.1016/j.psep.2010.04.001.

    Article  CAS  Google Scholar 

  8. Rincón J, Cañizares P, García MT. Regeneration of used lubricant oil by ethane extraction. J Supercrit Fluids. 2007;39(3):315–22. https://doi.org/10.1016/j.supflu.2006.03.007.

    Article  CAS  Google Scholar 

  9. Gurgacz W, Walendziewski J. Physicochemical properties of lubricating oil fractions obtained by hydrorefining of waste oils. Erdoel Erdgas Kohle. 2000;116(3):129–32.

    CAS  Google Scholar 

  10. Wang F, Li ML, Duan PG, Fu J, Lü XY, Xu YP. Co-hydrotreating of used engine oil and the low-boiling fraction of bio-oil blends for the production of liquid fuel. Fuel Process Technol. 2016;146:62–9. https://doi.org/10.1016/j.fuproc.2016.02.015.

    Article  CAS  Google Scholar 

  11. Ali MF, Abbas S. A review of methods for the demetallization of residual fuel oils. Fuel Process Technol. 2006;87(7):573–84. https://doi.org/10.1016/j.fuproc.2006.03.001.

    Article  CAS  Google Scholar 

  12. Montanari L, Palmieri E, Tinucci L, Pianta O. Molecular features of sulfonic acids used for synthesis of overbased detergent additives. Lubr Sci. 2006;18(3):173–85. https://doi.org/10.1002/ls.16.

    Article  CAS  Google Scholar 

  13. Yang H, Zhang M, Chu Q, Wang M, Jiang Z, Diao T. Pyrolysis process and mechanism for calcium elimination of used lubricating oil. J Anal Appl Pyrol. 2022;165: 105540. https://doi.org/10.1016/j.jaap.2022.105540.

    Article  CAS  Google Scholar 

  14. Sun M, Ning X, Zhang J, Li K, Tang Q, Liu Z, Wang G, Wang H. Combustion kinetics and structural features of bituminous coal before and after modification process. J Therm Anal Calorim. 2018;131(2):983–92. https://doi.org/10.1007/s10973-017-6709-2.

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.

  16. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  17. Brown M, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson H, Kemmler A, Keuleers R, Janssens J. Computational aspects of kinetic analysis. Thermochimica Acta - THERMOCHIM ACTA. 2000;355:125–43. https://doi.org/10.1016/S0040-6031(00)00443-3.

    Article  CAS  Google Scholar 

  18. Lira T, Santos K, Murata VV, Gianesella M, Barrozo M. The use of nonlinearity measures in the estimation of kinetic parameters of sugarcane bagasse pyrolysis. Chem Eng Technol. 2010;33:1699–705. https://doi.org/10.1002/ceat.201000137.

    Article  CAS  Google Scholar 

  19. Ramiah MV. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci. 1970;14(5):1323–37. https://doi.org/10.1002/app.1970.070140518.

    Article  CAS  Google Scholar 

  20. Choudhury ND, Bhuyan N, Bordoloi N, Saikia N, Kataki R. Production of bio-oil from coir pith via pyrolysis: kinetics, thermodynamics, and optimization using response surface methodology. Biomass Convers Biorefinery. 2021;11(6):2881–98. https://doi.org/10.1007/s13399-020-00630-3.

    Article  CAS  Google Scholar 

  21. Pratap A, Lilly Shanker Rao T, Lad KN, Dhurandhar HD. Isoconversional vs Model fitting methods. J Therm Anal Calorim. 2007;89(2):399–405. https://doi.org/10.1007/s10973-006-8160-7.

    Article  CAS  Google Scholar 

  22. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89(2):479–90. https://doi.org/10.1007/s10973-006-8486-1.

    Article  CAS  Google Scholar 

  23. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355(1):35–42. https://doi.org/10.1016/S0040-6031(00)00435-4.

    Article  CAS  Google Scholar 

  24. Jiang Z, Chu Q, Yang H, Zhao R, Yu Y, Wang M, Liu R. Kinetic model for removing phosphorus and zinc from waste lubricating oil by pyrolysis. Process Saf Environ Prot. 2021;148:980–91. https://doi.org/10.1016/j.psep.2021.02.021.

    Article  CAS  Google Scholar 

  25. Lim ACR, Chin BLF, Jawad ZA, Hii KL. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Proc Eng. 2016;148:1247–51. https://doi.org/10.1016/j.proeng.2016.06.486.

    Article  CAS  Google Scholar 

  26. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Report Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  27. Flynn J, Wall L, Quick A. Direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett. 1966;4:323–8. https://doi.org/10.1002/pol.1966.110040504.

    Article  CAS  Google Scholar 

  28. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  29. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109(3):1203–14. https://doi.org/10.1007/s10973-012-2406-3.

    Article  CAS  Google Scholar 

  30. Chen H, Li J, Li Y, Cheng X. Microstructure and phase transition kinetics of Mg–Ni–Zn alloy phase change thermal storage materials. J Alloy Compd. 2020;829: 154574. https://doi.org/10.1016/j.jallcom.2020.154574.

    Article  CAS  Google Scholar 

  31. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92. https://doi.org/10.1002/app.1961.070051506.

    Article  CAS  Google Scholar 

  32. Gao Z, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversional methods. Thermochim Acta. 2001;369(1):137–42. https://doi.org/10.1016/S0040-6031(00)00760-7.

    Article  CAS  Google Scholar 

  33. Naktiyok J. Determination of the self-heating temperature of coal by means of TGA analysis. Energy Fuels. 2018;32(2):2299–305. https://doi.org/10.1021/acs.energyfuels.7b02296.

    Article  CAS  Google Scholar 

  34. Du L, Wang Y, Wang K, Luo G. Preparation of calcium benzene sulfonate detergents by a microdispersion process. Ind Eng Chem Res. 2013;52(31):10699–706. https://doi.org/10.1021/ie4013425.

    Article  CAS  Google Scholar 

  35. Saidi MZ, Pasc A, El Moujahid C, Canilho N, Badawi M, Delgado-Sanchez C, Celzard A, Fierro V, Peignier R, Kouitat-Njiwa R, Akram H, Chafik T. Improved tribological properties, thermal and colloidal stability of poly-α-olefins based lubricants with hydrophobic MoS2 submicron additives. J Colloid Interface Sci. 2020;562:91–101. https://doi.org/10.1016/j.jcis.2019.12.007.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Sheng Y, Zhao J, Zhou B, Ding X, Deng Y, Wang Z. In situ preparation of CaCO3/polystyrene composite nanoparticles. Mater Lett. 2006;60(27):3248–50. https://doi.org/10.1016/j.matlet.2006.02.090.

    Article  CAS  Google Scholar 

  37. Cai Z, Zhuang X, Yang X, Huang F, Wang Y, Li Y. Litsea cubeba kernel oil as a promising new medium-chain saturated fatty acid feedstock for biolubricant base oil synthesis. Ind Crops Prod. 2021;167: 113564. https://doi.org/10.1016/j.indcrop.2021.113564.

    Article  CAS  Google Scholar 

  38. Gan Z, Yao T, Zhang M, Hu J, Liao X, Shen Y. Effect of temperature on the composition of a synthetic hydrocarbon aviation lubricating oil. Materials. 2020;13(7):1606. https://doi.org/10.3390/ma13071606.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao T, Zhang N, Hu J, Liao X, Shen Y, Gan Z. Effect of temperature on the chemical composition and physicochemical properties of diester aviation lubrication oil. Int J Chem Eng. 2020. https://doi.org/10.1155/2020/8829206.

    Article  Google Scholar 

  40. Schlosberg RH, Scouten CG. Organic chemistry of calcium. Formation and pyrolysis of hydroxycalcium phenoxides. Energy Fuels. 1988;2(4):582–5. https://doi.org/10.1021/ef00010a028.

    Article  CAS  Google Scholar 

  41. Crispin X, Marciniak S, Osikowicz W, Zotti G, van der Gon AWD, Louwet F, Fahlman M, Groenendaal L, De Schryver F, Salaneck WR. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): a photoelectron spectroscopy study. J Polym Sci Part B Polym Phys. 2003;41(21):2561–83. https://doi.org/10.1002/polb.10659.

    Article  ADS  CAS  Google Scholar 

  42. Hutchison JE, Postlethwaite TA, Murray RW. Molecular films of thiol-derivatized tetraphenylporphyrins on gold: film formation and electrocatalytic dioxygen reduction. Langmuir. 1993;9(11):3277–83. https://doi.org/10.1021/la00035a084.

    Article  CAS  Google Scholar 

  43. Jeon K-W, Seo D-K. Concomitant Thionation and reduction of graphene oxide through solid/gas metathetical sulfidation reactions at high temperatures. Phosphorus Sulfur Silicon Relat Elem. 2014;189(6):721–37. https://doi.org/10.1080/10426507.2013.855773.

    Article  CAS  Google Scholar 

  44. Zhang Y, Jiang H, Wang K, Wang H, Wang C. Green flotation of polyethylene terephthalate and polyvinyl chloride assisted by surface modification of selective CaCO3 coating. J Clean Prod. 2020;242: 118441. https://doi.org/10.1016/j.jclepro.2019.118441.

    Article  CAS  Google Scholar 

  45. Otto FP. Lubricating oils containing carbonated basic sulfurized calcium phenates, US (1962)

  46. Zhao L, Yang T, Kaiser RI, Troy TP, Ahmed M, Ribeiro JM, Belisario-Lara D, Mebel AM. Combined experimental and computational study on the unimolecular decomposition of JP-8 jet fuel surrogates. II: n-Dodecane (n-C12H26). J Phys Chem A. 2017;121(6):1281–97. https://doi.org/10.1021/acs.jpca.6b11817.

    Article  CAS  PubMed  Google Scholar 

  47. Shokrlu YH, Babadagli T. Viscosity reduction of heavy oil/bitumen using micro- and nano-metal particles during aqueous and non-aqueous thermal applications. J Petrol Sci Eng. 2014;119:210–20. https://doi.org/10.1016/j.petrol.2014.05.012.

    Article  CAS  Google Scholar 

  48. Shokrlu YH, Baba Da Gli TJSRE. Engineering, in-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles: a study on in-situ catalysis and catalyst transportation, 16(3) (2013) 333–344.

  49. Moldoveanu SC. 1-General information about pyrolysis. In: Moldoveanu SC, editor. Analytical pyrolysis of natural organic polymers. 2nd ed. Elsevier; 2021. p. 3–27. https://doi.org/10.1016/B978-0-12-818571-1.00001-7.

    Chapter  Google Scholar 

  50. Guo X, Liu Z, Liu Q, Shi L. Modeling of lignin pyrolysis based on bond dissociation and fragments coupling. Fuel Process Technol. 2015;135:133–49. https://doi.org/10.1016/j.fuproc.2014.12.009.

    Article  CAS  Google Scholar 

  51. Montaudo G, Scamporrino E, Puglisi C, Vitalini D. Identification of pyrolysis products of polysulfides by collisionally activated decomposition linked scanning mass spectrometry. J Anal Appl Pyrolysis. 1987;10(4):283–90. https://doi.org/10.1016/0165-2370(87)80018-9.

    Article  CAS  Google Scholar 

  52. Collazzo GC, Broetto CC, Perondi D, Junges J, Dettmer A, Dornelles Filho AA, Foletto EL, Godinho M. A detailed non-isothermal kinetic study of elephant grass pyrolysis from different models. Appl Therm Eng. 2017;110:1200–11. https://doi.org/10.1016/j.applthermaleng.2016.09.012.

    Article  CAS  Google Scholar 

  53. Jain AA, Mehra A, Ranade VV. Processing of TGA data: Analysis of isoconversional and model fitting methods. Fuel. 2016;165(1):490–8.

    Article  CAS  Google Scholar 

  54. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391(1):119–27. https://doi.org/10.1016/S0040-6031(02)00169-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of the Science and Technology Innovation 2025 Major project of Ningbo [2018B10038], the Chair Professorship Program of Shandong University of Technology [117002] and the Natural Science Foundation of Shandong Province [ZR2020MB130].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Jiang or Ming Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Jiang, P., Jiang, Z. et al. Colloidal stability, pyrolysis properties and kinetics studies of calcium-containing detergents. J Therm Anal Calorim 149, 1057–1072 (2024). https://doi.org/10.1007/s10973-023-12773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12773-2

Keywords

Navigation