Skip to main content

Advertisement

Log in

Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 (\( P_{{{\text{O}}_{2} }} \)= 1.0) compared to inert argon (\( P_{{{\text{O}}_{2} }} \)= 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. SIGMA ALDRICH is a trademark of Merck KGaA

References

  1. C.M. Kramer, Z.A. Munir, and J.V. Volponi: Thermochimica Acta, 1982, vol. 55, pp. 11–17.

    Article  CAS  Google Scholar 

  2. M.J. Maeso and J. Largo: Thermochimica Acta, 1993, vol. 223, pp. 145–56.

    Article  CAS  Google Scholar 

  3. G.Y. Lai: High-Temperature Corrosion and Materials Applications, ASM International, Materials Park, OH, 2007.

    Google Scholar 

  4. Karl-Otto Honikel: Met. Sci., 2008, vol. 78, pp. 68–76.

    CAS  Google Scholar 

  5. A.J. Gutiérrez, C. Rubio, J.M. Caballero, and A. Hardisson: in Encyclopedia of Toxicology (Third Edition), Philip Wexler, ed., Academic Press, Oxford, 2014, pp. 532–35.

  6. I.A. Wolff and A.E. Wasserman: Science, 1972, vol. 177, p. 15.

    Article  CAS  Google Scholar 

  7. R.W. Carling and R.W. Mar: Report No. SAND-81-80201981.

  8. C.M. Kramer, Z.A. Munir, and J.V. Volponi: Solar Energy, 1982, vol. 29, pp. 437–39.

    Article  CAS  Google Scholar 

  9. C.M. Kramer, Z.A. Munir, and K.H. Stern: High Temp. Sci., 1983, vol. 16, pp. 257–67.

    CAS  Google Scholar 

  10. A.J. Bard and J.A. Plambeck: Encyclopedia of Electrochemistry of the Elements: Fused Salt Systems, Marcel Dekker, Inc., New York, NY, 1976.

    Google Scholar 

  11. A.L. Mehring, W.H. Ross, and A.R. Merz: Industr. Eng. Chem., 1929, vol. 21, pp. 379–82.

    Article  CAS  Google Scholar 

  12. C.W. Volley: United States Patent Office, Google Patents, New York, 1881.

  13. Soteris A. Kalogirou: Progr. Energy Combust. Sci., 2004, vol. 30, pp. 231–95.

    Article  CAS  Google Scholar 

  14. D. Mills: Solar Energy, 2004, vol. 76, pp. 19–31.

    Article  Google Scholar 

  15. S.A. Kalogirou: Solar Energy Engineering: Processes and Systems, Academic Press, Burlington, 2013.

    Google Scholar 

  16. Omid Mahian, Ali Kianifar, Soteris A. Kalogirou, Ioan Pop, and Somchai Wongwises: Int. J. Heat Mass Transfer, 2013, vol. 57, pp. 582–94.

    Article  CAS  Google Scholar 

  17. S. Kalagirou: Solar thermal collectors and applications, Elsevier Inc, New York, 2009.

    Google Scholar 

  18. Napoleon Enteria and Aliakbar Akbarzadeh: Solar Energy Sciences and Engineering Applications, CRC Press, Boca Raton, FL, 2013.

    Book  Google Scholar 

  19. Bauer T, Pfleger N, Breidenbach N, Eck M, Laing D, Kaesche S. Material aspects of solar salt for sensible heat storage. Appl Energy. 2013, 111:1114–11149.

    Article  CAS  Google Scholar 

  20. R. Serrano-López, J. Fradera, and S. Cuesta-López: Chem. Eng. Processing: Process Intensific., 2013, vol. 73, pp. 87–102.

    Article  CAS  Google Scholar 

  21. D.F. Williams: Report No. ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, TN, 2006.

  22. Bauer T, Pfleger N, Laing D, Steinmann WD, Eck M, Kaesche S: in F Lantelme, H Groult (eds ) Molten Salts Chemistry, Elsevier, Oxford, 2013, pp. 415–38.

    Chapter  Google Scholar 

  23. Kurt H. Stern: High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions, CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  24. Donghyun Shin and Debjyoti Banerjee: J. Heat Transfer, 2011, vol. 133, p. 024501.

    Article  CAS  Google Scholar 

  25. Dongsheng Wen, Guiping Lin, Saeid Vafaei, and Kai Zhang: Particuology, 2009, vol. 7, pp. 141–50.

    Article  CAS  Google Scholar 

  26. A. Dowtherm, Product Technical Data, 1997.

  27. J.W. Raade and D. Padowitz: J. Solar Energy Eng. Trans. ASME, 2011, vol. 133, p. 12.

    Article  CAS  Google Scholar 

  28. HITEC®, Heat Transfer Salt, Coastal Chemical Co., L.L.C., Houston, TX, 2014.

  29. Osami Abe, Taizo Utsunomiya, and Yoshio Hoshino: Thermochimica Acta, 1984, vol. 78, pp. 251–60.

    Article  CAS  Google Scholar 

  30. T. Bauer, D. Laing, and R. Tamme: Molten Salts Chemistry and Technology, MS9, Trondheim, Norway, June 2011, pp. 5–9.

    Google Scholar 

  31. R.W. Bradshaw and D.E. Meeker: Solar Energy Mater., 1990, vol. 21, pp. 51–60.

    Article  CAS  Google Scholar 

  32. Xuejun Zhang, Jun Tian, Kangcheng Xu, and Yici Gao: J. Phase Equilibria, 2003, vol. 24, pp. 441–46.

    Article  CAS  Google Scholar 

  33. O. Greis, K.M. Bahamdan, and B.M. Uwais: Thermochimica Acta, 1985, vol. 86, pp. 343–50.

    Article  CAS  Google Scholar 

  34. Rebecca I. Dunn, Patrick J. Hearps, and Matthew N. Wright: Proc. IEEE, 2012, vol. 100, pp. 504–15.

    Article  CAS  Google Scholar 

  35. H.J. Emeléus and A.G. Sharpe: Advances in Inorganic Chemistry and Radiochemistry, Academic Press, New York, NY, 1964.

    Google Scholar 

  36. Saul Gordon and Clement Campbell: Analyt. Chem., 1955, vol. 27, pp. 1102–09.

    Article  CAS  Google Scholar 

  37. E.A. Bordyushkova, P.I. Prostsenko, and L.N. Venerovskaya: Russ. J. Appl. Chem., 1967, vol. 40, pp. 1386–90.

    Google Scholar 

  38. Rene I. Olivares: Solar Energy, 2012, vol. 86 pp. 2576–83.

    Article  CAS  Google Scholar 

  39. R.I. Olivares and W.Edwards: Thermochimica Acta, 2013, 560, pp. 34–42.

    Article  CAS  Google Scholar 

  40. R.W. Bradshaw, J.G. Cordaro, and N.P. Siegel: in SME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, 2009, pp. 615–24.

  41. T.M. Oza: J. Ind. Chem. Soc., 1945, vol. 22, pp. 173–80.

    CAS  Google Scholar 

  42. T.M. Oza and S.A. Patel: J. Ind. Chem. Soc., 1954, vol. 31, p. 519.

    CAS  Google Scholar 

  43. R.N. Kust and J.D. Burke: Inorg. Nucl. Chem. Lett., 1970, vol. 6, pp. 333–35.

    Article  CAS  Google Scholar 

  44. Joseph G. Cordaro: Green, 2013, vol. 3, pp. 9–18.

    Article  Google Scholar 

  45. R.W. Mar, R.W. Bradshaw, R.W. Carling, and A.S. Nagelberg: International Symposium on Molten Salt Chemistry and Technology 1, 1983, pp. 285–88.

  46. Roger F. Bartholomew: J. Phys. Chem., 1966, vol. 70, pp. 3442–46.

    Article  CAS  Google Scholar 

  47. Eli S. Freeman: J. Am. Chem. Soc., 1957, vol. 79, pp. 838–42.

    Article  CAS  Google Scholar 

  48. G.D. Sirotkin: Russ. J. Inorg. Chem., 1959, vol. 4, pp. 1180–84.

    Google Scholar 

  49. C.J. Hardy and B.O. Field: J. Chem. Soc., 1963, vol. 11, pp. 5130–34.

    Article  Google Scholar 

  50. D.A. Nissen and D.E. Meeker: Inorg. Chem., 1983, vol. 22, pp. 716–21.

    Article  CAS  Google Scholar 

  51. W. Benaissa and D. Carson: 45th Annual Loss Preventive Symp. 2011 (LPS), AIChE, Chicago, IL, 2011.

  52. Eli S. Freeman: J. Phys. Chem., 1956, vol. 60, pp. 1487–93.

    Article  CAS  Google Scholar 

  53. Alfred Büchler and James L. Stauffer: J. Phys. Chem., 1966, vol. 70, pp. 4092–94.

    Article  Google Scholar 

  54. Thomas Bauer, Nicole Pfleger, Nils Breidenbach, Markus Eck, Doerte Laing, and Stefanie Kaesche: Appl. Energy, 2013, vol. 111, pp. 1114–19.

    Article  CAS  Google Scholar 

  55. J. Alexander and S.G. Hindin: Ind. Eng. Chem., 1947, vol. 39, pp. 1044–49.

    Article  CAS  Google Scholar 

  56. F. Paniccia and P.G. Zambonin: J. Phys. Chem., 1973, vol. 77, pp. 1810–13.

    Article  CAS  Google Scholar 

  57. Geoff McConohy and Alan Kruizenga: Solar Energy, 2014, vol. 103, pp. 242–52.

    Article  CAS  Google Scholar 

  58. Kurt H. Stern: High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions, CRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  59. J.G. Cordaro, N.C. Rubin, and R.W. Bradshaw: J. Solar Energy Eng., 2011, vol. 133, p. 011014.

    Article  CAS  Google Scholar 

  60. Qiangzhi Xie, Qunzhi Zhu, and Yan Li: Nanoscale Res. Lett., 2016, vol. 11, pp. 1–7.

    Article  CAS  Google Scholar 

  61. P.D. Myers, Jr., T.E. Alam, R.Kamal, D.Y. Goswami, and E. Stefanakos: Appl. Energy, 2016, vol. 165, pp. 225–33.

    Article  CAS  Google Scholar 

  62. Yifeng Jiang, Yanping Sun, Ming Liu, Frank Bruno, and Sean Li: Solar Energy Mater. Solar Cells, 2016, vol. 152, pp. 155–60.

    Article  CAS  Google Scholar 

  63. J.P. da Cunha, P. Eames: Appl. Energy, 2016, vol. 177, pp. 227–38.

    Article  CAS  Google Scholar 

  64. Joohyun Seo and Donghyun Shin: Appl. Therm. Eng., 2016, vol. 102, pp. 144–48.

    Article  CAS  Google Scholar 

  65. Nicole Pfleger, Thomas Bauer, Claudia Martin, Markus Eck, and Antje Wörner: Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1487–97.

    Article  CAS  Google Scholar 

  66. S.A. Kalogirou, V.A., and G. Panayiotou: 12th International Conference on Energy Storage, 2012.

  67. Zalba B, Marın JM, Cabeza LF, Mehling H: Appl. Thermal Eng., 2003, vol. 23, pp. 251–83.

    Article  CAS  Google Scholar 

  68. Cammenga HK, Eysel W, Gmelin E, Hemminger W, Höhne GW, Sarge SM: Thermochimica Acta, 1993, vol. 219, pp. 333–42.

    Article  CAS  Google Scholar 

  69. G.W.H. Höhne, H.K. Cammenga, W. Eysel, E. Gmelin, and W. Hemminger: Thermochimica Acta, 1990, vol. 160, pp. 1–12.

    Article  Google Scholar 

  70. P.K. Gallagher, M.E. Brown, and R.B. Kemp: Handbook of Thermal Analysis and Calorimetry, Elsevier, New York, 1998.

    Google Scholar 

  71. F.D. Rossini: Pure Appl. Chem., 1970, vol. 22, p. 577.

    Article  Google Scholar 

  72. Sarge SM, Gmelin E, Höhne GW, Cammenga HK, Hemminger W, Eysel W: Thermochimica Acta, 1994, vol. 247, pp. 129–68.

    Article  CAS  Google Scholar 

  73. Sabbah R, Xu-Wu A, Chickos JS, Leitão MP, Roux MV, Torres LA: Thermochimica Acta, 1999, vol. 331, pp. 93–204.

    Article  Google Scholar 

  74. J. Emsley: The Elements, 3rd ed., Oxford Press, Oxford, 1989.

    Google Scholar 

  75. Thermal Analysis Software Calisto-Setaram Setsys Evolution, CALISTO, KEP Technologies, 2013, <http://www.setaram.com/CALISTO.htm>, accessed Mar. 4, 2013.

  76. Mohammad MB, Brooks GA, Rhamdhani MA: Renewable Energy, 2017, vol. 104, pp. 76–87.

    Article  CAS  Google Scholar 

  77. Kurt H. Stern: J. Phys. Chem. Ref. Data, 1972, vol. 1, pp. 747–72.

    Article  Google Scholar 

  78. S Aduru, S Contarini, JW Rabalais: J. Phys. Chem., 1986, vol. 90, pp. 1683–88.

    Article  CAS  Google Scholar 

  79. Kevin G. Zeeb, Malcolm G. Lowings, Keith G. McCurdy, and Loren G. Hepler: Thermochimica Acta, 1980, vol. 40, pp. 245–49.

    Article  CAS  Google Scholar 

  80. Yoshio Hoshino, Taizo Utsunomiya, and Osami Abe: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1385–91.

    Article  CAS  Google Scholar 

  81. V.V. Deshpande, M.D. Karkhanavala, and U.R.K. Rao: J. Therm. Analy. Calorim., 1974, vol. 6, pp. 613–21.

    Article  CAS  Google Scholar 

  82. D. Sergeev, E. Yazhenskikh, D. Kobertz, K. Hack, and M. Müller: Calphad, 2015, vol. 51, pp. 111–24.

    Article  CAS  Google Scholar 

  83. Rao CN, Prakash B, Natarajan M: Nat. Stand., 1975, vol. 12, pp. 1–48.

    Google Scholar 

  84. D.M. Speros and R.L. Woodhouse: J. Phys. Chem., 1963, vol. 67, pp. 2164–68.

    Article  CAS  Google Scholar 

  85. G. Widmann, Product Technical Data, 2001.

  86. Ramana G. Reddy, Tao Wang, and Divakar Mantha: Thermochimica Acta, 2012, vol. 531, pp. 6–11.

    Article  CAS  Google Scholar 

  87. Robert W. Carling: Thermochimica Acta, 1983, vol. 60, pp. 265–75.

    Article  CAS  Google Scholar 

  88. D.J. Rogers and G.J. Janz: Melting-crystallization and pre-melting properties of NaNO 3 -KNO 3 , Rensselaer Polytechnic Institute, Troy, NY, 1984.

    Google Scholar 

  89. William Klement: J. Inorg. Nucl. Chem., 1974, vol. 36, pp. 1916–18.

    Article  CAS  Google Scholar 

  90. O. Beneš, R.J.M. Konings, S. Wurzer, M. Sierig, and A. Dockendorf: Thermochimica Acta, 2010, vol. 509, pp. 62–66.

    Article  CAS  Google Scholar 

  91. C.M. Kramer and C.J. Wilson: Thermochimica Acta, 1980, vol. 42, pp. 253–64.

    Article  CAS  Google Scholar 

  92. M.J. Maeso and J. Largo: Thermochimica Acta, 1993, vol. 222, pp. 195–201.

    Article  CAS  Google Scholar 

  93. T. Jriri, J. Rogez, C. Bergman, and J.C. Mathieu: Thermochimica Acta, 1995, vol. 266, pp. 147–61.

    Article  CAS  Google Scholar 

  94. Y. Takahashi, R. Sakamoto, and M. Kamimoto: Int. J. Thermophys., 1988, vol. 9, pp. 1081–90.

    Article  CAS  Google Scholar 

  95. E.A. Dancy and P. Nguyen-Duy: Thermochimica Acta, 1979, vol. 31, p. 395.

    Article  CAS  Google Scholar 

  96. Edna A. Dancy: Thermochimica Acta, 1982, vol. 59, pp. 251–52.

    Article  CAS  Google Scholar 

  97. Derek J. Rogers and George J. Janz: J. Chem. Eng. Data, 1982, vol. 27, pp. 424–28.

    Article  CAS  Google Scholar 

  98. E.Y. Wang: J. Electrochem. Soc., 1976, vol. 123, pp. 435–37.

    Article  CAS  Google Scholar 

  99. M.J. Westphal, J.W. Wood, R.D. Redin, and T. Ashworth: J. Appl. Phys., 1993, vol. 73, pp. 7302–10.

    Article  CAS  Google Scholar 

  100. H. Zamali and M. Jemal: J. Thermal Analysis, 1994, vol. 41, pp. 1091–99.

    Article  CAS  Google Scholar 

  101. P. Nguyen-Duy and E. A. Dancy: Thermochimica Acta, 1980, vol. 39, pp. 95–102.

    Article  Google Scholar 

  102. Y. Dessureault, J. Sangster, and A.D. Pelton: J. Chim. Phys., 1990, vol. 87, pp. 407–53.

    Article  CAS  Google Scholar 

  103. G.J. Janz, F.J. Kelly, and J.L. Pérano: J. Chem. Eng. Data, 1964, vol. 9, pp. 133–36.

    Article  CAS  Google Scholar 

  104. H.M. Goodwin and H.T. Kalmus: Phys. Rev (Ser. I)., 1909, vol. 28, p. 1.

    CAS  Google Scholar 

  105. R.P. Clark: J. Chem. Eng. Data, 1973, vol. 18, pp. 67–70.

    Article  CAS  Google Scholar 

  106. H.M. Miekk-Oja, Doctoral dissertation, Suomalainen Tiedeakatemia, 1941.

  107. A.G. Bergman, I.S. Rassonskaya, and N.E. Shmidt: Sektora Fiz. Khim Anal. Akad. Nauk SSSR, 1955, vol. 26, pp. 156–63.

    CAS  Google Scholar 

  108. A. Mustajoki: Ann. Acad. Sci. Fenn. A, 1957, vol. 6, pp. 1–12.

    Google Scholar 

  109. O.J. Kleppa: J. Chem. Eng. Data, 1963, vol. 8, pp. 331–32.

    Article  CAS  Google Scholar 

  110. T. Hu: J. Phys. Chem., 1964, vol. 68, pp. 387–90.

    Article  CAS  Google Scholar 

  111. Kutsuna H, Morita T, Fukuda K: Nippon Kikai Gakkai Ronbunshu, 1990;56(530), 3034-38.

    CAS  Google Scholar 

  112. A. Arell, and M. Varteva: Transition Energy and Temperature of TiNO 3 at the Transition I II, Suomalainen Tiedeakatemia, 1962.

  113. A. Mustajoki: Ann. Acad. Sci. Fenn. A, 1962, vol. 6, pp. 1–11.

    Google Scholar 

  114. N.E. Shmidt and D.N. Maksimov: Z. Fiz. Khim., 1979, vol. 53, pp. 1895–99.

    CAS  Google Scholar 

  115. J.A.A. Ketelaar and B. Strijk: Rec. Trav. Chim. Pays-Bas, 1945, vol. 64, pp. 174–82.

    Article  CAS  Google Scholar 

  116. F.C. Kracek: J. Am. Chem. Soc., 1931, vol. 53, pp. 2609–24.

    Article  CAS  Google Scholar 

  117. C.C. Person: Ann. Phys., 1847, vol. 146, pp. 300–01.

    Article  Google Scholar 

  118. M. Bakes, J. Dupuy, and J. Guion: Comptes Rendus Hebdomadaires Seances Acad. Sci., 1963, vol. 256, p. 2376.

    CAS  Google Scholar 

  119. P.W. Bridgman: Proceedings American Academy of Arts and Sciences, JSTOR, 1916, pp. 581–625.

  120. Robert Speyer: Thermal Analysis of Materials, CRC Press, Boca Raton, FL, 1993.

    Book  Google Scholar 

  121. E.L. Charsley, P.G. Laye, H.M. Markham, J.O. Hill, B. Berger, and T.T. Griffiths: Thermochimica Acta, 2008, vol. 469, pp. 65–70.

    Article  CAS  Google Scholar 

  122. E. Charrier, E.L. Charsley, P.G. Laye, H.M. Markham, B. Berger, and T.T. Griffiths: Thermochimica Acta, 2006, vol. 445, pp. 36–39.

    Article  CAS  Google Scholar 

  123. E.M. Brown: Introduction to Thermal Analysis: Techniques and Applications, 2nd ed., Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  124. C. Schick and G.W.H. Höhne: Thermochimica Acta, 1991, vol. 187, pp. 351–56.

    Article  CAS  Google Scholar 

  125. I. Egry: in S. Seetharaman, ed., Treatise on Process Metallurgy, Elsevier, Boston, MA, 2014, pp. 61–148.

    Chapter  Google Scholar 

  126. W.J. Boettinger, U.R. Kattner, K.W. Moon, and J.H. Perepezko: DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2006.

  127. J. Schawe and C. Schick: Thermochimica Acta, 1991, vol. 187, pp. 335–49.

    Article  CAS  Google Scholar 

  128. M. Sweeney: Thermochimica Acta, 1975, vol. 11, pp. 409–24.

    Article  CAS  Google Scholar 

  129. M.G. Lowings, K.G. McCurdy, and L.G. Hepler: Thermochimica Acta, 1978, vol. 23, pp. 365–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding of this project by the Swinburne University of Technology.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehedi Bin Mohammad.

Additional information

Manuscript submitted September 19, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, M.B., Brooks, G.A. & Rhamdhani, M.A. Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3. Metall Mater Trans B 49, 1482–1498 (2018). https://doi.org/10.1007/s11663-018-1205-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1205-z

Keywords

Navigation