Skip to main content
Log in

MHD natural convection in an annular space between two coaxial cylinders partially filled with metal base porous layer saturated by Cu–water nanofluid and subjected to a heat flux

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to better understand the behavior of the nanofluid in a specific configuration, aiding in the creation of new models and designs for heat transfer systems, by investigating the MHD natural convection in an annular partially porous metal space between two vertical concentric cylinders, which is saturated by (Cu–water) nanofluid. The inside cylinder undergoes a regular heat flux, whereas the outer cylinder maintains a uniform temperature. The upper and lower walls are impermeable and insulated. In the upward direction, an exterior magnetic field with constant intensity is used. The nonlinear coupled conservation equations with specified boundary conditions in the vorticity-stream function form are solved using the finites differences method in conjunction with the successive over relaxation method. The numerical results obtained are presented to show the impact of a variety of control parameters depicted in Darcy number \(10^{-5} \le \textrm{Da} \le 10^{-1}\), Rayleigh number \(10^{4} \le \textrm{Ra} \le 10^{6}\), Hartmann number \(0 \le \textrm{Ha} \le 100\), heater size, the porous layer thickness \(0.25 \le \textrm{Xp} \le 0.75\), and nanoparticle concentration \(0.01 \le \phi \le 0.05\). From this study, the increase in the Ra number from \(10^{4}\) to \(10^{6}\) causes a thermal energy transmission improvement of 50%. Furthermore, a rise in the Da number from \(\textrm{Da}=10^{-5}\) to \(\textrm{Da}=10^{-1}\) enhances the thermal energy transport by approximately 30\(\%\), while it reduces by 4.8% when we increase the Hartmann number from 0 to 100. Also, the rise in nanoparticle concentration leads to an enhancement of the average Nusselt number, while the heat transfer rate is reduced by extending the heater size. The numerical results also show a significant improvement in the thermal energy transport in active walls by using an optimum thickness layer of stainless steel porous medium, according to the Da number. Furthermore, this study demonstrates that there is a critical value of porosity for a given nanoparticle concentration and porous layer thickness for better heat transfer enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AL:

Aspect ratio

\(R_{{\text{i}}}\) :

Inner radius \(\left[ {\text{m}} \right]\)

\(R_{{\text{e}}}\) :

Outer radius \(\left[ {\text{m}} \right]\)

H :

Cavity height \(\left[ {\text{m}} \right]\)

Xp:

Porous layer thickness

g:

Gravity acceleration \(\left[ {{\text{ms}}^{{ - 2}} } \right]\)

\(r,z\) :

System coordinate \(\left[ {\text{m}} \right]\)

\(\overline{r},\overline{z}\) :

Dimensionless coordinate

Ha:

Hartmann number

T :

Temperature function \(\left[ {\text{K}} \right]\)

\(\overline{T}\) :

Dimensionless temperature

UW :

Velocity component \(\left[ {{\text{ms}}^{{ - 1}} } \right]\)

\(\Omega\) :

Vorticity function

K :

The permeability \(\left[ {{\text{m}}^{{ - 1}} } \right]\)

Da:

Da number

Pr:

Prandtl number

Ra:

Rayleigh number

\({\text{Nu}}_{{{\mathrm{aver}}}}\) :

Average Nusselt number

Q :

Heat flux \(\left[ {{\text{Wm}}^{2} } \right]\)

\(C_{{\text{p}}}\) :

Specific capacity \(\left[ {{\text{JKg}}^{{ - 1}} {\text{K}}^{{ - 1}} } \right]\)

\(\lambda\) :

Thermal conductivity \(\left[ {{\text{Wm}}^{{ - 1}} {\text{K}}^{{ - 1}} } \right]\)

\(\beta\) :

Thermal expansion \(\left[ {{\text{K}}^{{ - 1}} } \right]\)

\(\Sigma , \Lambda\) :

Nanofluid constants

\(\phi\) :

Nanoparticle concentration

\(\mu\) :

Dynamic viscosity\(\left[ {{\text{Kgm}}^{{ - 1}} {\text{s}}^{{ - 1}} } \right]\)

Ls:

Source length \(\left[ {\text{m}} \right]\)

\(\rho\) :

Density \(\left[ {{\text{Kgm}}^{{ - 3}} } \right]\)

\({\Gamma }\) :

Effective viscosity

\(\alpha\) :

Thermal diffusivity

\(B_{0}\) :

Magnetic field \(\left[ {{\text{Kgs}}^{{ - 2}} {\text{A}}^{{ - 1}} } \right]\)

\(\overline{U},\overline{W}\) :

Dimensionless velocity component

\(\overline{\Omega }\) :

Dimensionless vorticity

\(\overline{\Psi }\) :

Dimensionless stream function

p :

Porous medium

nf:

Nanofluid

eff:

Effective

c:

Cold

h:

Hot

\(b_{{\text{f}}}\) :

Base fluid

\(n_{{\text{p}}}\) :

Solid nanoparticles

\(\epsilon\) :

Porosity

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Mater Sci. 1995;231:99–105.

    CAS  Google Scholar 

  2. Khanafer K, Kambiz V, Marilyn L. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  3. Heidary H, Kermani MJ. Effect of nano-particles on forced convection in sinusoidal-wall channel. Int Commun Heat Mass Transf. 2010;37(10):1520–7.

    Article  CAS  Google Scholar 

  4. Zhang X, Li J. A review of uncertainties in the study of heat transfer properties of nanofluids. Heat Mass Transf. 2022;4(59):1–33. https://doi.org/10.1007/s00231-022-03276-1.

    Article  CAS  Google Scholar 

  5. Yang YT, Wang YH, Tseng PK. Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids. Int Commun Heat Mass Transf. 2014;51:9–17.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M, Rokni HB. RETRACTED: Free convection of CuO–H2O nanofluid in a curved porous enclosure using mesoscopic approach. Int J Hydrog Energy. 2017;42:14942–9.

    Article  CAS  Google Scholar 

  7. Foukhari Y, Sammouda M, Driouich M, Belhouideg S. Nanoparticles shape effect on heat transfer by natural convection of nanofluid in a vertical porous cylindrical enclosure subjected to a heat flux. In: International conference on partial differential equations and applications, modeling and simulation 2021, pp. 437–445.

  8. Li Q, Zhang R, Hu P. Effect of thermal boundary conditions on forced convection under LTNE model with no-slip porous-fluid interface condition. Int J Heat Mass Transf. 2021;167:120803.

    Article  Google Scholar 

  9. Li Q, Hu P. Analytical solutions of fluid flow and heat transfer in a partial porous channel with stress jump and continuity interface conditions using LTNE model. Int J Heat Mass Transf. 2019;128:1280–95.

    Article  Google Scholar 

  10. Hu P, Li Q. Effect of heat source on forced convection in a partially-filled porous channel under LTNE condition. Int Commun Heat Mass Transf. 2020;114:104578.

    Article  Google Scholar 

  11. Mehryan SAM, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2019;135:1047–67.

    Article  CAS  Google Scholar 

  12. Alsabery AI, Chamkha AJ, Saleh H, Hashim J. Darcian natural convection in an inclined trapezoidal cavity partly filled with a porous layer and partly with a nanofluid layer. Sains Malays. 2017;46(5):803–15.

    Article  CAS  Google Scholar 

  13. Rashidi S, Nouri-Borujerdi A, Valipour MS, Ellahi R, Pop I. Stress-jump and continuity interface conditions for a cylinder embedded in a porous medium. Transp Porous Media. 2015;107:171–86.

    Article  CAS  Google Scholar 

  14. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf A Appl. 2014;65(11):1089–113.

    Article  CAS  Google Scholar 

  15. Mahdavi M, Saffar-Avval M, Tiari S, Mansoori Z. Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int J Heat Mass Transf. 2014;79:496–506.

    Article  Google Scholar 

  16. Karimi N, Mahmoudi Y, Mazaheri K. Temperature fields in a channel partially filled with a porous material under local thermal non-equilibrium condition-an exact solution. Proc Inst Mech Eng C J Mech Eng Sci. 2014;228(15):2778–89.

    Article  Google Scholar 

  17. Mahmoudi Y, Karimi N. Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int J Heat Mass Transf. 2014;68:161–73.

    Article  Google Scholar 

  18. Mahmoudi Y, Maerefat M. Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int J Therm Sci. 2011;50(12):2386–401.

    Article  Google Scholar 

  19. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51.

    Article  CAS  Google Scholar 

  20. Tahmasebi A, Mahdavi M, Ghalambaz M. Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer Heat Transf A Appl. 2018;73(4):254–76.

    Article  CAS  Google Scholar 

  21. Yang K, Chen H, Vafai K. Investigation of the momentum transfer conditions at the porous/free fluid interface: a benchmark solution. Numer Heat Transf A Appl. 2017;71(6):609–25.

    Article  Google Scholar 

  22. Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall (s). Int J Therm Sci. 2010;49(9):1856–65.

    Article  CAS  Google Scholar 

  23. Shirvan KM, Mamourian M, Mirzakhanlari S, Moghiman M. Investigation on effect of magnetic field on mixed convection heat transfer in a ventilated square cavity. Procedia Eng. 2015;127:1181–8.

    Article  Google Scholar 

  24. Van Gorder RA, Prasad KV, Vajravelu K. Convective heat transfer in the vertical channel flow of a clear fluid adjacent to a nanofluid layer: a two-fluid model. Heat Mass Transf. 2022;48:1247–55.

    Article  Google Scholar 

  25. Mebarek-Oudina F, Bessaïh R. Oscillatory magnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders. J Appl Fluid Mech. 2016;9(4):1655–65.

    Google Scholar 

  26. Mebarek-Oudina F, Aissa A, Mahanthesh B, Öztop HF. Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source. Int Commun Heat Mass Transf. 2020;117:104737.

    Article  Google Scholar 

  27. Pirmohammadi M, Ghassemi M. Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int Commun Heat Mass Transf. 2009;36(7):776–80.

    Article  CAS  Google Scholar 

  28. Veera KM. Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface. Heat Transf Asian Res. 2020;49(3):1374–85.

    Article  Google Scholar 

  29. Qureshi IH, Nawaz M, Abdel-Sattar MA, Aly S, Awais M. Numerical study of heat and mass transfer in MHD flow of nanofluid in a porous medium with Soret and Dufour effects. Heat Transf. 2021;50(5):4501–15.

    Article  Google Scholar 

  30. Babazadeh H, Zeeshan A, Jacob K, Hajizadeh A, Bhatti MM. Numerical modelling for nanoparticle thermal migration with effects of shape of particles and magnetic field inside a porous enclosure. Iran J Sci Technol Trans Mech Eng. 2021;45:801–11. https://doi.org/10.1007/s40997-020-00354-9.

    Article  Google Scholar 

  31. Giri SS, Das K, Kundu PK. Stefan blowing effects on MHD bioconvection flow of a nanofluid in the presence of gyrotactic microorganisms with active and passive nanoparticles flux. Eur Phys J Plus. 2017;132:1–14.

    Article  CAS  Google Scholar 

  32. Giri SS, Das K, Kundu PK. Heat conduction and mass transfer in a MHD nanofluid flow subject to generalized Fourier and Fick’s law. Mech Adv Mater Struct. 2020;27(20):1765–75.

    Article  Google Scholar 

  33. Giri SS, Das K, Kundu PK. Framing the features of a Darcy-Forchheimer nanofluid flow past a Riga plate with chemical reaction by HPM. Eur Phys J Plus. 2018;133:1–17.

    Article  CAS  Google Scholar 

  34. Das K, Giri SS, Kundu PK. Influence of Hall current effect on hybrid nanofluid flow over a slender stretching sheet with zero nanoparticle flux. Heat Transf. 2021;50(7):7232–50.

    Article  Google Scholar 

  35. Giri SS, Das K, Kundu PK. Homogeneous-heterogeneous reaction mechanism on MHD carbon nanotube flow over a stretching cylinder with prescribed heat flux using differential transform method. J Comput Des Eng. 2020;7(3):337–51.

    Google Scholar 

  36. Das K, Giri SS, Kundu PK. Induced magnetic field and second order velocity slip effects on TiO2-water/ethylene glycol nanofluids. Phys Scr. 2019;95(1):015803.

    Article  Google Scholar 

  37. Giri SS, Das K, Kundu PK. Influence of nanoparticle diameter and interfacial layer on magnetohydrodynamic nanofluid flow with melting heat transfer inside rotating channel. Math Methods Appl Sci. 2021;44(2):1161–75.

    Article  Google Scholar 

  38. Giri SS. Outlining the features of nanoparticle diameter and solid-liquid interfacial layer and Hall current effect on a nanofluid flow configured by a slippery bent surface. Heat Transf. 2023;52(2):1947–70.

    Article  Google Scholar 

  39. Giri SS, Kalidas Das, Kundu PK. Computational analysis of thermal and mass transmit in a hydromagnetic hybrid nanofluid flow over a slippery curved surface. Int J Ambient Energy. 2022;43(1):6062–70.

    Article  CAS  Google Scholar 

  40. Sammouda M, Gueraoui K. MHD double diffusive convection of Al2O3-water nanofluid in a porous medium filled an annular space inside two vertical concentric cylinders with discrete heat flux. J Appl Fluid Mech. 2021;14(5):1459–68.

    Google Scholar 

  41. Sammouda M, Gueraoui K, Driouich M, Belhouideg S. The effect of Al2O3 nanoparticles sphericity on heat transfer by free convection in an annular metal-based porous space between vertical cylinders submitted to a discrete heat flux. J Porous Media. 2022;25(2):59–74.

    Article  Google Scholar 

  42. Mahian O, Kianifar A, Kleinstreuer C, Moh’d AAN, Pop I, Sahin AZ, Wongwises S. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32.

    Article  CAS  Google Scholar 

  43. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  44. Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford university Press; 1904. p. 435–41.

    Google Scholar 

  45. Singh KD, Kumar R. Fluctuating heat and mass transfer on unsteady MHD free convection flow of radiating and reacting fluid past a vertical porous plate in slip-flow regime 2011, pp. 101–106.

  46. Sammouda M, Gueraoui K, Driouich M, Ghouli A, Dhiri A. Double diffusive natural convection in non-darcy porous media with non-uniform porosity. Int Rev Model Simul. 2013;7(6).

  47. Krane RJ. Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: Proceedings of the First ASME-JSME Thermal Engineering Joint Conference 1983, pp. 323–329.

  48. Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49(3):479–91. https://doi.org/10.1016/j.ijthermalsci.2009.09.002.

    Article  CAS  Google Scholar 

  49. Sankar M, Hong S, Do Y, Jang B. Numerical simulation of natural convection in a vertical annulus with a localized heat source. Meccanica. 2012;47:1869–85.

    Article  Google Scholar 

  50. Yücel N. Natural convection in rectangular enclosures with partial heating and cooling. Wärme-und Stoffübertragung. 1994;29(8):471–7.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by YF, MS and MD. The first draft of the manuscript was written by YF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Youness Foukhari.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foukhari, Y., Sammouda, M. & Driouich, M. MHD natural convection in an annular space between two coaxial cylinders partially filled with metal base porous layer saturated by Cu–water nanofluid and subjected to a heat flux. J Therm Anal Calorim 149, 131–144 (2024). https://doi.org/10.1007/s10973-023-12709-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12709-w

Keywords

Navigation