Skip to main content
Log in

Study on the characteristics of radon exhalation from fly ash filling materials in coal fire goaf based on the evolution of pore structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Large amount of inhalation of the radon exacerbates the risk of cancer in the human body, and human beings also pay more attention to the problem of environmental pollution. With the increasing mining of underground mineral resources, coal production has increased significantly, but at the same time, it has also increased the number of underground goaf, and it has also seriously increased the potential danger of spontaneous combustion in the goaf. The influence of thermal effect on pore structure and radon exhalation characteristics was studied by means of relevant measurement. The outcomes confirmed that the radon exhalation characteristics of fly ash increased linearly with the increase of temperature and then decreased exponentially. At 400 °C, the radon exhalation rate of fly ash is the highest, which is 8.41 Bq m−2 h−1, 2.11 times that of fly ash at normal temperature. This is closely related to the change in pore structure of fly ash after heat treatment. The research results in this study are significant for assessing the radiation risk of radon in fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdel-Razek YA, Masoud MS, Hanafi MY. Study of the parameters affecting radon gas flux from the stream sediments at Seila area Southeastern desert. Egypt Environ Earth Sci. 2015;73:8035–44.

    Article  CAS  Google Scholar 

  2. Barrio-Parra F, Izquierdo-Díaz M, Díaz-Curiel J, Miguel E. Field performance of the radon-deficit technique to detect and delineate a complex DNAPL accumulation in a multi-layer soil profile. Environ Pollut. 2021;269: 116200.

    Article  PubMed  CAS  Google Scholar 

  3. Chen W, Chen T, Xin F. Modeling of sound absorption based on the fractal microstructures of porous fibrous metals. Mater Des. 2016;105:386–97.

    Article  Google Scholar 

  4. Chowdhury S, Barman C, Deb A, Raha S, Ghose D. Study of variation of soil radon exhalation rate with meteorological parameters in Bakreswar-Tantloi geothermal region of West Bengal and Jharkhand. India J Radioanal Nucl Chem. 2019;319:23–32.

    Article  CAS  Google Scholar 

  5. Li M, Zhang J, Li A, Zhou N. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control. J Clean Prod. 2020;254: 120113.

    Article  Google Scholar 

  6. Zhang J, Zhang Q, Huang Y, Liu J, Zhou N, Zan D. Strata movement controlling effect of waste and fly ash backfillings in fully mechanized coal mining with backfilling face. Min Sci Technol (China). 2011;21(5):721–6.

    Article  Google Scholar 

  7. Zhang S, Shi T, Ni W, Li K, Gao W, Wang K, Zhang Y. The mechanism of hydrating and solidifying green mine fill materials using circulating fluidized bed fly ash-slag-based agent. J Hazard Mater. 2021;415: 125625.

    Article  PubMed  CAS  Google Scholar 

  8. Yang B, Jin J, Yin X, Wang X, Yang H. Effect of concentration and suspension agent (HPMC) on properties of coal gangue and fly ash cemented filling material. Shock Vib. 2021;2021:1–12.

    Article  Google Scholar 

  9. Su L, Fu G, Wang Y, Yao G, Zhang J, Xu X, Jia B. Preparation and performance of a low-carbon foam material of fly-ash-based foamed geopolymer for the goaf filling. Materials. 2020;13(4):841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shao X, Wang L, Li X, Fang Z, Zhao B, Tao Y, Sun J. Study on rheological and mechanical properties of aeolian sand-fly ash-based filling slurry. Energies. 2020;13(5):1266.

    Article  CAS  Google Scholar 

  11. Abd Ali FS, Mahdi KH, Jawad EA. Humidity effect on exhalation and length coefficient of radon in soil and building materials. Energy Proc. 2019;157:384–92.

    Article  CAS  Google Scholar 

  12. Belikov VT, Ryvkin DG. Studying changes in the structural and dynamic characteristics of a disintegrating massif of rocks using radon concentration variations. Russ J Nondestruct Test. 2011;47:343.

    Article  CAS  Google Scholar 

  13. Cinelli G, Tondeur F, Dehandschutter B. Development of an indoor radon risk map of the Walloon region of Belgium, integrating geological information. Environ Earth Sci. 2011;62:809–19.

    Article  CAS  Google Scholar 

  14. Contreras M, Martín MI, Gázquez MJ, Romero M, Bolívar JP. Valorisation of ilmenite mud waste in the manufacture of commercial ceramic. Constr Build Mater. 2014;72:31–40.

    Article  Google Scholar 

  15. Li P, Sun Q, Tang S, Li D, Yang T. Effect of heat treatment on the emission rate of radon from red sandstone. Environ Sci Pollut Res. 2021;28:62174–84.

    Article  CAS  Google Scholar 

  16. Catalano R, Immé G, Mangano G, Morelli D, Aranzulla M, Giammanco S, Thinova L. In situ and laboratory measurements for radon transport process study. J Radioanal Nucl Chem. 2015;306:673–84.

    Article  CAS  Google Scholar 

  17. Ćujić M, Janković ML, Petrović J, Dragović R, Đorđević M, Đokić M, Dragović S. Radon-222: environmental behavior and impact to (human and non-human) biota. Int J Biometeorol. 2021;65:69–83.

    Article  PubMed  Google Scholar 

  18. Dentoni V, Da Pelo S, Aghdam MM, Randaccio P, Loi A, Careddu N, Bernardini A. Natural radioactivity and radon exhalation rate of Sardinian dimension stones. Constr Build Mater. 2020;247: 118377.

    Article  CAS  Google Scholar 

  19. Jiang F, Wang Z, Chen G, Liu Y, Wu H, Tan B, Luo C. Experimental study of pore characteristics and radon exhalation of uranium tailing solidified bodies in acidic environments. Environ Sci Pollut Res. 2021;28:20111–20.

    Article  CAS  Google Scholar 

  20. Kennings TW, Noey JD, Mata LA, Kearfott KJ. Radon-222 charcoal canister steady state model calibrations performed in a highly controlled environmental chamber and a natural indoor environment. Health Phys. 2022;123:248–56.

    Article  PubMed  CAS  Google Scholar 

  21. Dieu Souffit G, Jacob Valdes M, Bobbo Modibo O, Flore TSY, Ateba Jean Félix B, Tokonami S. Radon risk assessment and correlation study of indoor radon, radium-226, and radon in soil at the cobalt–nickel bearing area of Lomié Eastern Cameroon. Water Air Soil Pollut. 2022;233:196.

    Article  CAS  Google Scholar 

  22. Nuhu H, Hashim S, Aziz Saleh M, Syazwan Mohd Sanusi M, Hussein Alomari A, Jamal MH, Hassan SA. Soil gas radon and soil permeability assessment: mapping radon risk areas in Perak State, Malaysia. PLoS ONE. 2021;16:0254099.

    Article  Google Scholar 

  23. Li P, Sun Q, Geng J, Shi Q, Hu J, Tang S. A study on the differences in radon exhalation of different lithologies at various depths and the factors influencing its distribution in northern Shaanxi. China Sci Total Environ. 2022;849: 157935.

    Article  PubMed  CAS  Google Scholar 

  24. Li P, Sun Q, Hu J, Jia H, Xue L. Effect of the pore structure of granite and gabbro after heat treatment on the radon emission rate. Environ Sci Pollut Res. 2022;29:36801–13.

    Article  CAS  Google Scholar 

  25. Burduhos Nergis DD, Abdullah MMAB, Sandu AV, Vizureanu P. XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder. Materials. 2022;13:343.

    Article  Google Scholar 

  26. Singh GB, Subramaniam KV. Quantitative XRD study of amorphous phase in alkali activated low calcium siliceous fly ash. Constr Build Mater. 2016;124:139–47.

    Article  Google Scholar 

  27. Kuhn HJ, Braslavsky S, Schmidt R. Chemical actinometry (IUPAC technical report). Pure Appl Chem. 2004;76:2105–46.

    Article  CAS  Google Scholar 

  28. Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Schué F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2012;84:377–410.

    Article  CAS  Google Scholar 

  29. Sahouli B, Blacher S, Brouers F. Fractal surface analysis by using nitrogen adsorption data: the case of the capillary condensation regime. Langmuir. 1996;12:2872–4.

    Article  CAS  Google Scholar 

  30. Sokołowska Z, Sokołowski S. Influence of humic acid on surface fractal dimension of kaolin: analysis of mercury porosimetry and water vapour adsorption data. Geoderma. 1999;88:233–49.

    Article  Google Scholar 

  31. Ma Y, Hu J, Ye G. The pore structure and permeability of alkali activated fly ash. Fuel. 2013;104:771–80.

    Article  CAS  Google Scholar 

  32. Zhang Z, Provis JL, Reid A, Wang H. Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence. Cem Concr Res. 2014;64:30–41.

    Article  CAS  Google Scholar 

  33. Zhang Z, Chen R, Hu J, Wang Y, Huang H, Ma Y, Yu Q. Corrosion behavior of the reinforcement in chloride-contaminated alkali-activated fly ash pore solution. Compos Part. 2021;224: 109215.

    Article  CAS  Google Scholar 

  34. Xin Y, Sun Q, Jia H, Yuan S, Ge Z, Tang L. Acoustic emission (AE) characteristics of limestone during heating. J Therm Anal Calorim. 2022;147(23):13725–36.

    Article  CAS  Google Scholar 

  35. Shapiro SM, O’Shea DC, Cummins HZ. Raman scattering study of the alpha-beta phase transition in quartz. Appl Phys Lett. 1967;19:361.

    Article  CAS  Google Scholar 

  36. Tsuneyuki S, Aoki H, Tsukada M, Matsui Y. Molecular-dynamics study of the α to β structural phase transition of quartz. Phy Rev Lett. 1990;64:776.

    Article  CAS  Google Scholar 

  37. Barnaby RJ, Rimstidt JD. Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. Geol Soc Am Bull. 1989;101:795–804.

    Article  CAS  Google Scholar 

  38. Metwally YM, Chesnokov E. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Appl Clay Sci. 2012;55:138–50.

    Article  CAS  Google Scholar 

  39. Yang D. Compressional wave propagation in saturated porous media and its numerical analysis using a space–time conservation element and solution element method. Rev Sci Instrum. 2021;92: 125108.

    Article  PubMed  CAS  Google Scholar 

  40. Dong Y, Hampshire S, Zhou JE, Ji Z, Wang J, Meng G. Sintering and characterization of flyash-based mullite with MgO addition. J Eur Ceram Soc. 2011;31:687–95.

    Article  CAS  Google Scholar 

  41. Li S, Du H, Guo A, Xu H, Yang D. Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in flyash body. Ceram Int. 2012;38:1027–32.

    Article  CAS  Google Scholar 

  42. Chauhan RP, Chakarvarti SK. Radon diffusion through soil and fly ash: effect of compaction. Radiat Meas. 2002;35:143–6.

    Article  CAS  Google Scholar 

  43. Kovler K, Perevalov A, Steiner V, Metzger LA. Radon exhalation of cementitious materials made with coal fly ash: part 1–scientific background and testing of the cement and fly ash emanation. J Environ Radioact. 2005;82:321–34.

    Article  PubMed  CAS  Google Scholar 

  44. Jobbágy V, Somlai J, Kovács J, Szeiler G, Kovács T. Dependence of radon emanation of red mud bauxite processing wastes on heat treatment. J Hazard Mater. 2009;172:1258–63.

    Article  PubMed  Google Scholar 

  45. Sas Z, Szántó J, Kovács J, Somlai J, Kovács T. Influencing effect of heat-treatment on radon emanation and exhalation characteristic of red mud. J Environ Radioact. 2015;148:27–32.

    Article  PubMed  CAS  Google Scholar 

  46. Sas Z, Somlai J, Szeiler G, Kovács T. Radon emanation and exhalation characteristic of heat-treated clay samples. Radiat Prot Dosim. 2015;152:51–4.

    Article  Google Scholar 

  47. Hegedűs M, Sas Z, Tóth-Bodrogi E, Szántó T, Somlai J, Kovács T. Radiological characterization of clay mixed red mud in particular as regards its leaching features. J Environ Radioact. 2016;162:1–7.

    Article  PubMed  Google Scholar 

  48. Kovács T, Shahrokhi A, Sas Z, Vigh T, Somlai J. Radon exhalation study of manganese clay residue and us-ability in brick production. J Environ Radioact. 2016;168:15–20.

    Article  PubMed  Google Scholar 

  49. Li P, Sun Q, Geng J, Yan X, Tang L. Radon exhalation from temperature treated loess. Sci Total Environ. 2022;832: 154925.

    Article  PubMed  CAS  Google Scholar 

  50. Przylibski TA. Estimating the radon emanation coefficient from crystalline rocks into groundwater. Appl Radiat Isot. 2022;53:473–9.

    Article  Google Scholar 

  51. Thu HNP, Van TN. The effects of some soil characteristics on radon emanation and diffusion. J Environ Radioact. 2020;216: 106189.

    Article  Google Scholar 

  52. Jonassen N. The determination of radon exhalation rates. Health Phys. 1983;45:369–76.

    Article  PubMed  CAS  Google Scholar 

  53. Kullab MK, Al-Bataina BA, Ismail AM, Abumurad KM. Seasonal variation of radon-222 concentrations in specific locations in Jordan. Radiat Meas. 2001;34:361–4.

    Article  CAS  Google Scholar 

  54. Jacobson DR, Khan NS, Collé R, Fitzgerald R, Laureano-Pérez L, Bai Y, Dmochowski IJ. Measurement of radon and xenon binding to a cryptophane molecular host. Proc Natl Acad Sci. 2011;108:10969–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kumar A, Chauhan RP. Back diffusion correction for radon exhalation rates of common building materials using active measurements. Mater Struct. 2015;48:919–28.

    Article  CAS  Google Scholar 

  56. Cinelli G, Tositti L, Capaccioni B, Brattich E, Mostacci D. Soil gas radon assessment and development of a radon risk map in Bolsena. Central Italy Environ Geochem Health. 2015;37:305–19.

    Article  PubMed  CAS  Google Scholar 

  57. Chauhan RP, Nain M, Kant K. Radon diffusion studies through some building materials: effect of grain size. Radiat Meas. 2008;43:445-S448.

    Article  Google Scholar 

  58. Keller G, Hoffmann B, Feigenspan TH. Radon permeability and radon exhalation of building materials. Sci Total Environ. 2001;272:85–9.

    Article  PubMed  CAS  Google Scholar 

  59. Li P, Sun Q, Geng J, Jing X, Tang L. Study on the characteristics of radon exhalation from rocks in coal fire area based on the evolution of pore structure. Sci Total Environ. 2023;862: 160865.

    Article  PubMed  CAS  Google Scholar 

  60. Narula AK, Goyal SK, Saini S, Chauhan RP, Chakarvarti SK. Calculation of radon diffusion coefficient and diffusion length for different building construction materials. Indian J Phys. 2019;83:1171–5.

    Article  Google Scholar 

  61. Tufail M, Shahzada K, Gencturk B, Wei J. Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete. Int J Concr Struct Mater. 2017;11:17–28.

    Article  CAS  Google Scholar 

  62. Hassan NM, Ishikawa T, Hosoda M, Iwaoka K, Sorimachi A, Sahoo SK, Tokonami S. The effect of water content on the radon emanation coefficient for some building materials used in Japan. Radiat Meas. 2011;46:232–7.

    Article  CAS  Google Scholar 

  63. Marsh JW, Tomášek L, Laurier D, Harrison JD. Effective dose coefficients for radon and progeny: a review of ICRP and UNSCEAR values. Radiat Prot Dosim. 2021;195:1–20.

    Article  CAS  Google Scholar 

  64. Rovenska K, Jiránek M. 1st International comparison measurement on assessing the diffusion coefficient of radon. Radiat Prot Dosim. 2011;145:127–32.

    Article  CAS  Google Scholar 

  65. Gharbi O, Bijeljic B, Boek E, Blunt MJ. Changes in pore structure and connectivity induced by CO2 injection in carbonates: a combined pore-scale approach. Energy Proc. 2013;37:5367–78.

    Article  CAS  Google Scholar 

  66. Qin Y, Yao S, Xiao H, Cao J, Hu W, Sun L, Liu X. Pore structure and connectivity of tight sandstone reservoirs in petroleum basins: a review and application of new methodologies to the Late Triassic Ordos Basin. China Mar Pet Geol. 2021;129: 105084.

    Article  Google Scholar 

  67. Vogel HJ, Roth K. Quantitative morphology and network representation of soil pore structure. Adv Water Resour. 2001;24:233–42.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 41972288).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. PL wrote the original draft of the article, made experiments and drew the figure. QS was involved in writing—review and editing, supervision, resources, funding and acquisition. YD, XZ and ZG were involved in investigation and writing—review and editing.

Corresponding author

Correspondence to Qiang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Sun, Q., Deng, Y. et al. Study on the characteristics of radon exhalation from fly ash filling materials in coal fire goaf based on the evolution of pore structure. J Therm Anal Calorim 149, 413–424 (2024). https://doi.org/10.1007/s10973-023-12672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12672-6

Keywords

Navigation