Skip to main content
Log in

Methacrylate terpolymers with short-chain comonomers as pour point depressants for diesel fuel and blends with biodiesel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper describes the synthesis of methacrylate-based terpolymer additives for diesel and biodiesel fuel that improve its properties at low temperatures. The synthesized additives contained different amounts of short-chain (methyl and benzyl) and long-chain (dodecyl and octadecyl) methacrylate comonomers. The crystallization behaviour of the additives and the formulations with diesel and biodiesel was observed by differential scanning calorimetry (DSC) and optical microscopy with polarization. DSC showed that the additives had a different effect on the crystallization temperature of the formulations. Microscopic images showed that the presence of additives influenced the size and number of wax crystals at low temperatures. Standard ASTM D5950 tests for pour point (PP) showed a large improvement in formulations with additives. In formulations with diesel, the addition of additives improved the PP value of diesel from − 18 °C to − 45 °C and in B10 diesel/biodiesel formulations from − 18 °C to − 54 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xue J, Grift TE, Hansen AC. Effect of biodiesel on engine performances and emissions. Renew Sust Energ Rev. 2011;15:1098–116. https://doi.org/10.1016/j.rser.2010.11.016.

    Article  CAS  Google Scholar 

  2. Dehaghani AMS, Rahimi R. An experimental study of diesel fuel cloud and pour point reduction using different additives. Pet. 2019;5:413–6. https://doi.org/10.1016/j.petlm.2018.06.005.

    Article  Google Scholar 

  3. EN 590:2022; Automotive fuels—diesel—requirements and test methods. European Committee for Standardization: Brussels, Belgium, 2022.

  4. Knothe G, Krahl J, van Gerpen J. The biodiesel handbook. 1st ed. London: AOCS Publishing; 2005. p. 15. https://doi.org/10.1201/9781003040262.

    Book  Google Scholar 

  5. Janović Z. Naftni i petrokemijski procesi i proizvodi. 2nd ed. Zagreb:Hrvatsko društvo za goriva i maziva; 2011.

  6. Totten GE, Shah R, Forester D. Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing. 2nd ed. West Conshohocken, PA: ASTM International; 2019. https://doi.org/10.1520/MNL37-2ND-EB.

    Book  Google Scholar 

  7. Simbi I, Aigbe UO, Oyekola OO, Osibote OA. Chemical and quality performance of biodiesel and petrol blends. Energy Convers Manag. 2022;15:100256. https://doi.org/10.1016/j.ecmx.2022.100256.

    Article  CAS  Google Scholar 

  8. Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D. Opportunities and challenges for biodiesel fuel. Appl Energy. 2011;88:1020–31. https://doi.org/10.1016/j.apenergy.2010.09.029.

    Article  Google Scholar 

  9. Knothe G, Razon LF. Biodiesel fuels. Prog Energy Combust Sci. 2017;58:36–59. https://doi.org/10.1016/j.pecs.2016.08.001.

    Article  Google Scholar 

  10. Wenchao W, Fashe L, Ying L. Effect of biodiesel ester structure optimization on low temperature performance and oxidation stability. J Mater Sci Technol. 2020;9:2727–36. https://doi.org/10.1016/j.jmrt.2020.01.005.

    Article  CAS  Google Scholar 

  11. Dunn RO. Crystallization behavior of fatty acid methyl esters. J Am Oil Chem Soc. 2008;85:961–72. https://doi.org/10.1007/s11746-008-1279-x.

    Article  CAS  Google Scholar 

  12. Chabane S, Benziane M, Khimeche K, Trache D, Didaoui S, Yagoubi N. Low-temperature behavior of diesel/biodiesel blends. J Therm Anal Calorim. 2018;131:1615–24. https://doi.org/10.1007/s10973-017-6614-8.

    Article  CAS  Google Scholar 

  13. Srivastava SP, Hancsók J. Fuels and fuel-additives. New Jersey: Wiley; 2014.

    Book  Google Scholar 

  14. Yin S, Yang T, Xue Y, Xie M, Chen F, Lin H, Dai B, Gao F, Han S. Influence of tetradecyl methacrylate-N-α-methacrylamide copolymers as pour point depressants on the cold flow property of diesel fuel. Energ Fuel. 2020;34:11976–86. https://doi.org/10.1021/acs.energyfuels.0c00890.

    Article  CAS  Google Scholar 

  15. Yang T, Yin S, Xie M, Chen F, Su B, Lin H, Xue Y, Han S. Effects of N-containing pour point depressants on the cold flow properties of diesel fuel. Fuel. 2020;272:117666. https://doi.org/10.1016/j.fuel.2020.117666.

    Article  CAS  Google Scholar 

  16. Lin H, Yin S, Su B, Xue Y, Han S. Research on combined-pour point depressant of methacrylate-acrylamide copolymers and ethylene-vinyl acetate copolymers for diesel fuel. Fuel. 2021;290:120002. https://doi.org/10.1016/j.fuel.2020.120002.

    Article  CAS  Google Scholar 

  17. Wu Y, Ni G, Yang F, Li C, Dong G. Modified maleic anhydride Co-polymers as pour-point depressants and their effects on waxy crude oil rheology. Energ Fuel. 2012;26:995–1001. https://doi.org/10.1021/ef201444b.

    Article  CAS  Google Scholar 

  18. Xu G, Xue Y, Zhao Z, Lian X, Lin H, Han S. Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel. Fuel. 2018;216:898–907. https://doi.org/10.1016/j.fuel.2017.06.126.

    Article  CAS  Google Scholar 

  19. Lin H, Xie M, Yin S, Yang T, Su B, Chen F, Han S, Xue Y. Influence of methacrylate-benzyl methacrylate-N-vinyl-2-pyrrolidone as pour point depression on cold flow properties of diesel fuel. Energ Fuel. 2020;34:1514–23. https://doi.org/10.1021/acs.energyfuels.9b03603.

    Article  CAS  Google Scholar 

  20. Chen F, Liu J, Yang T, Yin S, Su B, Xie M, Dai B, Han S, Xue Y. Influence of maleic anhydride-co-methyl benzyl acrylate copolymers modified with long-chain fatty amine and long-chain fatty alcohol on the cold flow properties of diesel fuel. Fuel. 2020;268:117392. https://doi.org/10.1016/j.fuel.2020.117392.

    Article  CAS  Google Scholar 

  21. Zhang F, Liu J, Zhu X, Jin D, Yang T, Yin S, Lin H, Han S, Xue Y. Performance improvement of the benzyl methacrylate-methacrylate copolymers pour point depressant by hybrid with nano-silica for diesel fuels. Energ Source Part A. 2020. https://doi.org/10.1080/15567036.2020.1751746.

    Article  Google Scholar 

  22. Xie M, Chen F, Liu J, Yang T, Yin S, Lin H, Xue Y, Han S. Synthesis and evaluation of benzyl methacrylate-methacrylate copolymers as pour point depressant in diesel fuel. Fuel. 2019;255:115880. https://doi.org/10.1016/j.fuel.2019.115880.

    Article  Google Scholar 

  23. Su B, Wang L, Xue Y, Yan J, Dong Z, Lin H, Han S. Effect of pour point depressants combined with dispersants on the cold flow properties of biodiesel-diesel blends. J Am Oil Chem Soc. 2021;98:163–72. https://doi.org/10.1002/aocs.12456.

    Article  CAS  Google Scholar 

  24. Jukić A, Rogošić M, Vidović E, Janović Z. Terpolymerization kinetics of methyl methacrylate or styrene/dodecyl methacrylate/octadecyl methacrylate systems. Polym Int. 2006;56:112–20. https://doi.org/10.1002/pi.2125.

    Article  CAS  Google Scholar 

  25. Cao K, Zhu Q, Wei X, Yu Y, Yao Z. Influences of the molecular weight and its distribution of poly(styrene-alt-octadecyl maleimide) as a flow improver for crude oils. Energ Fuel. 2016;30:2721–8. https://doi.org/10.1021/acs.energyfuels.5b02946.

    Article  CAS  Google Scholar 

  26. Pucko I, Racar M, Faraguna F. Synthesis, characterization, and performance of alkyl methacrylates and tert-butylaminoethyl methacrylate tetra polymers as pour point depressants for diesel: influence of polymer composition and molecular weight. Fuel. 2022;324:124821. https://doi.org/10.1016/j.fuel.2022.124821.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgements: This research was carried out within the framework of the Croatian Science Foundation project Development of Functional Biofuels and Additives and Characterization of Blends with Mineral Fuels (FunBioFA, UIP-2019-04-5242).

Funding

Hrvatska Zaklada za Znanost, UIP-2019-04-5242, Fabio Faraguna.

Author information

Authors and Affiliations

Authors

Contributions

IP: Writing—original draft, Formal analysis, Software, Visualization. RA: Writing—original draft, Visualization, Software. FF: Conceptualization, Methodology, Writing—review & editing, Visualization, Supervision.

Corresponding author

Correspondence to Fabio Faraguna.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20923 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucko, I., Anelić, R. & Faraguna, F. Methacrylate terpolymers with short-chain comonomers as pour point depressants for diesel fuel and blends with biodiesel. J Therm Anal Calorim 148, 13363–13373 (2023). https://doi.org/10.1007/s10973-023-12633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12633-z

Keywords

Navigation