Skip to main content
Log in

Better performance criteria for plate heat exchanger with hybrid nanofluid: flow rate or concentration

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The energetic and exergetic enactments of the plate heat exchanger (corrugated) were studied theoretically using a hybrid nanofluid. Alumina–silver (Al–Ag) and magnesia–silver (Mg–Ag) nanoparticles were mixed in the propylene glycol–water brine and ethylene glycol–water brine solutions. Here, two cases were dealt with, one with a given flow rate and the other with a given area and concentration. The effect of nanoparticle concentration and hybrid nanofluid flow rate was studied on different parameters. It was observed that the overall heat transfer coefficient, pressure drop, pumping power, non-dimensional exergy destruction, entropy generation rate, and irreversibility rise with the flow rate. In contrast, the irreversibility distribution ratio reduces with the flow rate. Moreover, the trend reversed with the nanofluid volume concentration up to 0.5% concentration was observed, which can be treated as a critical parameter. In studied ranges, propylene glycol brine performs better than ethylene glycol brines. The alumina–silver combination is found to be better than the magnesia–silver combination. Increasing the flow rate is suggested as a better option than increasing the nanoparticle concentration for a given area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This is the Authors’ original data and has not been taken from anywhere. Also, neither was submitted anywhere for publication.

Abbreviations

Ag:

Silver

Al:

Alumina

EG:

Ethylene glycol

HEX:

Heat exchanger

HTC:

Heat transfer coefficient

HyNf:

Hybrid nanofluid

IDR:

Irreversibility distribution ratio

MWCNT:

Multiwalled carbon nanotube

MgO:

Magnesia

NDE:

Non-dimensional exergy destruction

PHE:

Plate heat exchanger

PG:

Propylene glycol

A :

Area (m2)

b :

Channel spacing (m)

c p :

Specific heat (J kg1 K1)

Dh :

Hydraulic diameter (m)

f :

Friction factor (Dimensionless)

G :

Mass velocity (kg s1 m2)

h :

Heat transfer coefficient (W K1 m2)

I :

Irreversibility (W)

Lv:

Vertical distance between centers of ports (m)

Lw:

Plate width inside gasket (m)

:

Mass flow rate (kg s1)

N e :

Effective number of plates (Dimensionless)

N t :

Total number of plates (Dimensionless)

N p :

Number of pass (Dimensionless)

p :

Pressure (Pa)

P :

Power (W)

\(\dot{Q}\) :

Heat transfer rate (W)

T :

Temperature (°C)

t :

Thickness (m)

U :

Overall heat transfer coefficient (W K−1 m2)

Φ :

Volume concentration (%)

ρ :

Density (kg m3)

c:

Cold side

ci:

Cold inlet

co:

Cold outlet

H:

Hot side

hi:

Hot inlet

hnf:

Hybrid nanofluid

ho:

Hot outlet

max:

Maximum

min:

Minimum

P:

Port

References

  1. Kumar S, Dinesha P. Application of soft computing techniques to optimize thermal parameters in a double heat exchanger with cylindrical turbulators. Heat Transf. 2021;50(6):5286–304. https://doi.org/10.1002/htj.22124.

    Article  Google Scholar 

  2. Girirajan B, Rathikarani D. Optimal CRONE controller using meta-heuristic optimization algorithm for shell and tube heat exchanger. In: ICMSMT 2021 IOP conference series: materials science and engineering, vol. 1166, pp. 1–15. https://doi.org/10.1088/1757-899X/1166/1/01205.

  3. Olana FD, Abose TA. PID temperature controller design for shell and tube heat exchanger. Int J Eng Manuf. 2021. https://doi.org/10.5815/ijem.2021.01.05.

    Article  Google Scholar 

  4. Mallesh MB, Banapurmath NR, Manzoore Elahi MS, Vinay A, Nazia H, Mujtaba MA, Khan TMY, Rao BN, Khadiga AI, Ashraf E. Performance indicators for the optimal BTE of biodiesels with additives through engine testing by the Taguchi approach. Chemosphere. 2022;288:132450. https://doi.org/10.1016/j.chemosphere.2021.132450.

    Article  CAS  Google Scholar 

  5. Alshukri M, Hussein A, Eidan A, Alsabery A. A review on applications and techniques of improving the performance of heat pipe-solar collector systems. Sol Energy. 2022;236:417–33. https://doi.org/10.1016/j.solener.2022.03.022.

    Article  CAS  Google Scholar 

  6. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-newtonian flows. New York: ASME; 1995. p. 99–105.

    Google Scholar 

  7. Das NK, Naik PK, Reddy DN, Mallik BS, Bose S, Banerjee T. Experimental and molecular dynamic insights on the thermophysical properties for MWCNT-phosphonium based eutectic thermal media. J Mol Liq. 2022;354:118892. https://doi.org/10.1016/j.molliq.2022.118892.

    Article  CAS  Google Scholar 

  8. Eid MR, Nafe MA. Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves Random Complex Media. 2022;32:1103–27. https://doi.org/10.1080/17455030.2020.1810365.

    Article  Google Scholar 

  9. Wang J, Yu K, Ye M, Wang E, Wang W, Sundén B. Effects of pin fins; vortex generators on thermal performance in a microchannel with Al2O3 nanofluids. Energy. 2022;239:122606. https://doi.org/10.1016/j.energy.2021.122606.

    Article  CAS  Google Scholar 

  10. Arshad M, Hussain A, Hassan A, Wro P, Elfasakhany A, Elkotb M, Abdelmohimen M, Galal A. Thermal energy investigation of magnetohydrodynamic nano-material liquid flow over a stretching sheet: comparison of single and composite particles. Alex Eng J. 2022;61:10453–62. https://doi.org/10.1016/j.aej.2022.03.069.

    Article  Google Scholar 

  11. Kumar V, Sahoo R. Energy-economic and exergy-environment performance evaluation of compact heat exchanger with turbulator passive inserts using THDNF. J Therm Sci Eng Appl. 2023;15:021011. https://doi.org/10.1115/1.4056240.

    Article  CAS  Google Scholar 

  12. Kumar V, Sahoo R. 4 E’s (energy, exergy, economic, environmental) performance analysis of air heat exchanger equipped with various twisted turbulator inserts utilizing ternary hybrid nanofluids. Alex Eng J. 2022;61:5033–50. https://doi.org/10.1016/j.aej.2021.09.037.

    Article  Google Scholar 

  13. Singh SK. Review on the stability of the nanofluids. Pipeline engineering-design, failure, and management. IntechOpen; 2023. https://doi.org/10.5772/intechopen.107154.

    Book  Google Scholar 

  14. Afshari F, Manay E, Rahimpour S, Sahin B, Muratçobanoglu B, Teimuri-Mofrad R. A review study on factors affecting the stability of nanofluids. Heat Transf Res. 2022;53:77–91. https://doi.org/10.1615/HeatTransRes.2022041979.

    Article  Google Scholar 

  15. Singh U, Kumar N. Stability issues and operating limitations of nanofluid filled heat pipe: a critical review. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.01.309.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental studies on convective heat transfer and pressure drop characteristics of metal and metal oxide nanofluids under turbulent flow regime. Heat Transf Eng. 2016;37(5):422–34. https://doi.org/10.1080/01457632.2015.1057448.

    Article  CAS  Google Scholar 

  17. Meyer JP, Adio SA, Sharifpur M. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng. 2016;37(5):387–421. https://doi.org/10.1080/01457632.2015.1057447.

    Article  CAS  Google Scholar 

  18. Vishwakarma RK. Review of the heat exchanger modeling and simulation. Int J Eng Innov Technol. 2023;4(1):1–8.

    Google Scholar 

  19. Bhattad A, Rao BN, Atgur V, Banapurmath NR, Sajjan AM, Vadlamudi C, Krishnappa S, Khan TMY, Ayachit NH. Studies on evaluation of the thermal conductivity of alumina titania hybrid suspension nanofluids for enhanced heat transfer applications. ACS Omega. 2023;8(27):24176–84. https://doi.org/10.1021/acsomega.2c07513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhattad A, Rao BN, Atgur V, Veza I, Zamri MFMA, Fattah IMR. Thermal performance evaluation of plate-type heat exchanger with alumina–titania hybrid suspensions. Fluids. 2023;8(4):120. https://doi.org/10.3390/fluids8040120.

    Article  CAS  Google Scholar 

  21. Bhattad A, Atgur V, Rao BN, Banapurmath NR, Khan TMY, Vadlamudi C, Krishnappa S, Sajjan AM, Shankara RP, Ayachit NH. Review on mono and hybrid nanofluids: preparation, properties, investigation, and applications in IC engines and heat transfer. Energies. 2023;16(7):3189. https://doi.org/10.3390/en16073189.

    Article  CAS  Google Scholar 

  22. Gulmus B, Muratcobanoglu B, Mandev E, Afshari F. Experimental and numerical investigation of flow and thermal characteristics of aluminum block exchanger using surface-modified and recycled nanofluids. Int J Numer Method Heat Fluid Flow. 2023;33(8):2685–709. https://doi.org/10.1108/HFF-12-2022-0721.

    Article  Google Scholar 

  23. Afshari F, Muratcobanoglu B. Thermal analysis of Fe3O4/water nanofluid in spiral and serpentine mini channels by using experimental and theoretical models. Int J Environ Sci Technol. 2023;20:2037–52. https://doi.org/10.1007/s13762-022-04119-6.

    Article  CAS  Google Scholar 

  24. Gerdroodbary MB, Jafaryar M, Sheikholeslami M, Amini Y. The efficacy of magnetic force on thermal performance of ferrofluid in a screw tube. Case Stud Therm Eng. 2023;49:103187. https://doi.org/10.1016/j.csite.2023.103187.

    Article  Google Scholar 

  25. Ghazanfari V, Imani M, Shadman MM, Amini Y, Zahakifar F. Numerical study on the thermal performance of the shell and tube heat exchanger using twisted tubes and Al2O3 nanoparticles. Prog Nucl Energy. 2023;155:104526. https://doi.org/10.1016/j.pnucene.2022.104526.

    Article  CAS  Google Scholar 

  26. Amaris C, Bourouis M, Valles M, Salavera D, Coronas A. Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absoption refrigeration systems. Heat Transf Eng. 2015;36:388–95. https://doi.org/10.1080/01457632.2014.923983.

    Article  CAS  Google Scholar 

  27. Tiwari AK, Ghosh P, Sarkar J. Performance comparison of the plate heat exchanger using different nanofluids. Exp Therm Fluid Sci. 2013;49:141–51. https://doi.org/10.1016/j.expthermflusci.2013.04.012.

    Article  CAS  Google Scholar 

  28. Tiwari AK, Ghosh P, Sarkar J. Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl Therm Eng. 2013;57:24–32. https://doi.org/10.1016/j.applthermaleng.2013.03.047.

    Article  CAS  Google Scholar 

  29. Pandey SD, Nema VK. Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp Therm Fluid Sci. 2012;38:248–56. https://doi.org/10.1016/j.expthermflusci.2011.12.013.

    Article  CAS  Google Scholar 

  30. Khairul MA, Alim MA, Mahbubul IM, Saidur R, Hepbasli A, Hossain A. Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int Commun Heat Mass Transf. 2014;50:8–14. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.006.

    Article  CAS  Google Scholar 

  31. Kumar V, Tiwari AK, Ghosh SK. Effect of chevron angle on heat transfer performance in plate heat exchanger using ZnO/water nanofluid. Energy Convers Manag. 2016;118:142–54. https://doi.org/10.1016/j.enconman.2016.03.086.

    Article  CAS  Google Scholar 

  32. Jokar A, O’Halloran SP. Heat transfer and fluid flow analysis of nanofluids in corrugated plate heat exchangers using computational fluid dynamics simulation. J Therm Sci Eng Appl. 2013;5:1–10. https://doi.org/10.1115/1.4007777.

    Article  Google Scholar 

  33. Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Therm Fluid Sci. 2016;72:190–6. https://doi.org/10.1016/j.expthermflusci.2015.11.009.

    Article  CAS  Google Scholar 

  34. Tabari ZT, Heris SZ. Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid. J Disper Sci Technol. 2015;36:196–204. https://doi.org/10.1080/01932691.2014.894917.

    Article  CAS  Google Scholar 

  35. Tabari ZT, Heris SZ, Moradi M, Kahani M. The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renew Sust Energ Rev. 2016;58:1318–26. https://doi.org/10.1016/j.rser.2015.12.292.

    Article  CAS  Google Scholar 

  36. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sust Energ Rev. 2015;43:164–77. https://doi.org/10.1016/j.rser.2014.11.023.

    Article  CAS  Google Scholar 

  37. Alklaibi AM, Sundar LS, Mouli KVVC. Experimental investigation on the performance of hybrid Fe3O4 coated MWCNT/Water nanofluid as a coolant of a plate heat exchanger. Int J Therm Sci. 2022;171(1–2):107249. https://doi.org/10.1016/j.ijthermalsci.2021.107249.

    Article  CAS  Google Scholar 

  38. Bhattad A, Babu SS. Thermal analysis of shell and tube type heat exchanger using hybrid nanofluid. Trends Sci. 2022;19:2890–2890. https://doi.org/10.48048/tis.2022.2890.

    Article  Google Scholar 

  39. Bhattad A, Sarkar J, Ghosh P. Exergetic analysis of plate evaporator using hybrid nanofluids as secondary refrigerant for low temperature applications. Int J Exergy. 2017;24(1):1–20. https://doi.org/10.1504/IJEX.2017.086857.

    Article  CAS  Google Scholar 

  40. Bhattad A, Sarkar J, Ghosh P. Energy-Economic analysis of plate evaporator using brine based hybrid nanofluids as secondary refrigerant. Int J Air-Cond Refrig. 2018;26(1):1850003. https://doi.org/10.1142/S2010132518500037.

    Article  CAS  Google Scholar 

  41. Bhattad A, Sarkar J, Ghosh P. Energetic and exergetic performances of plate heat exchanger using brine based hybrid nanofluid for milk chilling application. Heat Transf Eng. 2020;41(6–7):522–35. https://doi.org/10.1080/01457632.2018.1546770.

    Article  CAS  Google Scholar 

  42. Bhattad A, Sarkar J, Ghosh P. Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int Commun Heat Mass Transf. 2018;91:262–73. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.020.

    Article  CAS  Google Scholar 

  43. Klein SA. Engineering equation solver professional, Version V10.042-3D., 2016.

  44. Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6:147059. https://doi.org/10.1155/2014/1470.

    Article  Google Scholar 

  45. Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003.

    Article  CAS  Google Scholar 

  46. Kakaç S, Liu H. Heat exchangers: selection, rating and thermal design. 2nd ed. Florida: CRC Press LLC; 2002.

    Book  Google Scholar 

  47. Huang D, Wu Z, Sunden B. Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Transf. 2015;89:620–6. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082.

    Article  CAS  Google Scholar 

  48. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982. p. 118–34. https://doi.org/10.1115/1.3167072.

    Book  Google Scholar 

  49. Tiwari AK, Ghosh P, Sarkar J. Particle concentration levels of various nanofluids in plate heat exchanger for best performance. Int J Heat Mass Transf. 2015;89:1110–8. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author has done all the necessary work required. There is no contribution of anyone in this regard.

Corresponding author

Correspondence to Atul Bhattad.

Ethics declarations

Conflict of interest

As this manuscript contains a single author, there is no conflict of interest between the authors and any other person.

Ethics approval

Not applicable.

Consent to participate

Not Applicable.

Consent for publication

The author is ready to publish work in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattad, A. Better performance criteria for plate heat exchanger with hybrid nanofluid: flow rate or concentration. J Therm Anal Calorim 148, 14295–14304 (2023). https://doi.org/10.1007/s10973-023-12612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12612-4

Keywords

Navigation