Skip to main content
Log in

Impacts of nanoparticle shapes on Ag-water nanofluid thin film flow through a porous medium with thermal radiation and ohmic heating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Our present study intends to examine the unsteady thin film flow and heat transfer of \({{\rm Ag}{-}{\rm H}_2 {\rm O}}\)nanofluid on a stretching sheet embedded in a porous medium. Radiative heat, Ohmic heating with slip, and convective boundary conditions are taken into account. The effect of various nanoparticle shape factors is also investigated. Nanofluid thermal conductivity depends on nanoparticle shape. The primary time-dependent equations are transformed using similarity transformation and solved using a prominent Runge–Kutta fourth-order and shooting iterative process. Graphs and numerical values of physical factors pertinent to fluid flow are obtained using MATLAB software. The skin friction coefficient and the heat transfer rate are also investigated and tabulated. Results reveal that magnetic, porosity, and unsteady parameters all have a diminishing impact on velocity profiles. Radiation parameter has a positive impact on temperature distribution, while an opposite trend is observed for magnetic fields. Findings indicate that magnetic field and porosity enhance the skin friction coefficient, whereas heat transfer rate increases with Biot number and slip parameter. Platelet-shaped nanoparticles are shown to be the most efficient in heat transfer. The outcomes were compared to previously reported results and found excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ab :

Stretching rate constants    (\({\rm s}^{-1}\))

\(A_1, A_2\) :

Viscosity enhancement coefficients    (–)

B :

Applied magnetic field    (Tesla)

\(c_{\rm p}\) :

Specific heat    (\({\rm J\,K}^{-1}\))

\(Cf_{\rm x}\) :

Skin friction coefficient    (–)

Ec:

Eckert number    (–)

f :

Dimensionless velocity function    (–)

h :

Height    (m)

\(k^*\) :

Absorption coefficient    (\({\rm m}^{-2}\))

\(k_{\rm f}\) :

Thermal conductivity of base fluid    (\({\rm W\,m}^{-1}\,{\rm K}^{-1}\))

\(k_{\rm nf}\) :

Thermal conductivity of nanofluid    (\({\rm W\,m}^{-1}\,{\rm K}^{-1}\))

K :

Variable permeability of porous medium    (\({\rm m}^2\))

\(K_1\) :

Porosity parameter    (–)

\(K_2\) :

Slip parameter    (-)

m :

Shape factor    (–)

M :

Magnetic parameter    (–)

\({\rm Nu}_{\rm x}\) :

Nusselt number    (–)

Pr:

Prandtl number    (–)

\(q_{\rm w}\) :

Heat flux    (\({\rm W\,m}^{-2}\))

R :

Radiation parameter    (–)

\({\rm Re}_{\rm x}\) :

Reynolds number    (–)

S :

Unsteadiness parameter    (–)

T :

Temperature field    (K)

\(T_0\) :

Temperature at the slit    (K)

\(T_{\rm ref}\) :

Constant reference temperature    (K)

\(T_{\rm s}\) :

Stretched sheet’s temperature    (K)

uv :

Velocity component in xy axis    (\(m s^{-1}\))

U :

Stretching sheet velocity    (\(m s^{-1}\))

\(\beta\) :

Film thickness    (–)

\(\eta\) :

Similarity variable    (–)

\(\gamma\) :

Biot number    (–)

\(\mu _{\rm f}\) :

Dynamic viscosity of base fluid    (\({\rm Nsm}^{-2}\))

\(\mu _{\rm nf}\) :

Dynamic viscosity of nanofluid    (\({\rm Nsm}^{-2}\))

\(\nu _{\rm f}\) :

Kinematic viscosity of base fluid    (\({\rm m}^2\,{\rm s}^{-1}\))

\(\nu _{\rm nf}\) :

Kinematic viscosity of nanofluid    (\({\rm m}^2\,{\rm s}^{-1}\))

\(\rho _{\rm f}\) :

Density of base fluid    (\({\rm kg\,m}^{-3}\))

\(\rho _{\rm nf}\) :

Density of nanofluid    (\({\rm kg\,m}^{-3}\))

\(\rho _{\rm s}\) :

Density of nanoparticle    (\({\rm kg\,m}^{-3}\))

\((\rho c_{\rm p})_{\rm nf}\) :

Heat capacitance of nanofluid    (\({\rm J\,kg}^{-1}\,{\rm K}^{-1}\))

\(\sigma _{\rm nf}\) :

Nanofluid electrical conductivity    (\({\rm Sm}^{-1}\))

\(\sigma _{\rm s}\) :

Nanoparticle electrical conductivity    (\({\rm Sm}^{-1}\))

\(\sigma ^*\) :

Stefan–Boltzmann constant    (\({\rm Wm}^{-2}{\rm s}^{-4}\))

\(\tau _{\rm w}\) :

Shear stress    (\({\rm Nm}^{-2}\))

\(\theta\) :

Dimensionless temperature function    (–)

\(\phi _1\) :

Volume fraction    (–)

References

  1. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Technical report, Argonne National Lab.(ANL), Argonne, IL (United States) 1995;

  2. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  3. Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  4. Yu W, France DM, Routbort JL, Choi SU. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  5. Hamad M, Bashir MA. Boundary-layer flow and heat transfer of a power-law non-Newtonian nanofluid over a vertical stretching sheet. World Appl Sci J (Special Issue Appl Math). 2009;7:172–8.

    Google Scholar 

  6. Khan W, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf. 2010;53(11–12):2477–83.

    Article  CAS  Google Scholar 

  7. Reddy MG, Rani MS, Kumar KG, Prasannakumar B, Lokesh H. Hybrid dusty fluid flow through a Cattaneo–Christov heat flux model. Physica A. 2020;551: 123975.

    Article  Google Scholar 

  8. Ramesh K, Asogwa KK, Oreyeni T, Reddy MG, Verma A. Emhd radiative titanium oxide-iron oxide/ethylene glycol hybrid nanofluid flow over an exponentially stretching sheet. Biomass Convers Biorefin, 2023; 1–10

  9. Reddy MG, Kumar KG, Shehzad S. A static and dynamic approach of aluminum alloys (AA7072-AA7075) over a semi-infinite heated plate. Phys Scr. 2020;95(12): 125201.

    Article  CAS  Google Scholar 

  10. Latha KBS, Reddy MG, Tripathi D, Bég OA, Kuharat S, Ahmad H, Ozsahin DU, Askar S. Computation of stagnation coating flow of electro-conductive ternary Williamson hybrid GO-AU-Co3O4/EO nanofluid with a cattaneo-christov heat flux model and magnetic induction. Sci Rep. 2023;13(1):10972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shehzad S, Reddy M, Rauf A, Mushtaq T, Abbasi F. Magnetohydrodynamic squeezing micropolar nanofluid flow confined in parallel disks with implication of maxwell-cattaneo law. Phys Scr. 2023;98(6): 065201.

    Article  Google Scholar 

  12. Reddy MG, Kumar N, Prasannakumara B, Rudraswamy N, Kumar KG. Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering arrhenius energy. Commun Theor Phys. 2021;73(4): 045002.

    Article  Google Scholar 

  13. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1): 014304.

    Article  Google Scholar 

  14. Ferrouillat S, Bontemps A, Poncelet O, Soriano O, Gruss J. Influence of nanoparticle shape factor on convective heat transfer of water-based ZnO nanofluids: performance evaluation criterion. Int J Mech Ind Eng. 2011;1(2):7–13.

    Google Scholar 

  15. Amin TE, Roghayeh G, Fatemeh R, Fatollah P. Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency. Energy Explor Exploit. 2015;33(5):659–76.

    Article  Google Scholar 

  16. Akbar NS, Butt AW, Tripathi D. Nanoparticle shapes effects on unsteady physiological transport of nanofluids through a finite length non-uniform channel. Results Phys. 2017;7:2477–84.

    Article  Google Scholar 

  17. Ahmed N, Khan U, Mohyud-Din ST. Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disks. Alex Eng J. 2018;57(3):1893–903.

    Article  Google Scholar 

  18. Waqas H, Farooq U, Muhammad T, Manzoor U. Importance of shape factor in Sisko nanofluid flow considering gold nanoparticles. Alex Eng J. 2022;61(5):3665–72.

    Article  Google Scholar 

  19. Khidir A, Sibanda P. Nanofluid flow over a nonlinear stretching sheet in porous media with MHD and viscous dissipation effects. J Porous Media, 2014; 17(5)

  20. Yirga Y, Shankar B. MHD flow and heat transfer of nanofluids through a porous media due to a stretching sheet with viscous dissipation and chemical reaction effects. Int J Comput Methods Eng Sci Mech. 2015;16(5):275–84.

    Article  CAS  Google Scholar 

  21. Krishnamurthy M, Prasannakumara B, Gorla RSR, Gireesha B. Non-linear thermal radiation and slip effect on boundary layer flow and heat transfer of suspended nanoparticles over a stretching sheet embedded in porous medium with convective boundary conditions. J Nanofluids. 2016;5(4):522–30.

    Article  Google Scholar 

  22. Pal D, Mandal G. Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int J Mech Sci. 2017;126:308–18.

    Article  Google Scholar 

  23. Mishra A, Kumar M. Viscous dissipation and joule heating influences past a stretching sheet in a porous medium with thermal radiation saturated by silver–water and copper–water nanofluids. Spec Top Rev Porous Media An Int J, 2019; 10(2)

  24. Padmaja K, Kumar BR. Buoyancy and ohmic heating effects on MHD nanofluid flow over a vertical plate embedded in a porous medium. J Porous Media. 2022;25(8):1–18.

    Article  Google Scholar 

  25. Lin Y, Li B, Zheng L, Chen G. Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technol. 2016;301:379–86.

    Article  CAS  Google Scholar 

  26. Ghadikolaei S, Yassari M, Sadeghi H, Hosseinzadeh K, Ganji D. Investigation on thermophysical properties of \(Tio_2\)-Cu/\(H_2O\) hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 2017;322:428–38.

    Article  CAS  Google Scholar 

  27. Hamid M, Usman M, Zubair T, Haq RU, Wang W. Shape effects of \(MoS_2\) nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach. Int J Heat Mass Transf. 2018;124:706–14.

    Article  CAS  Google Scholar 

  28. Jamshed W, Devi SU, Nisar KS. Single phase based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. Phys Scr. 2021;96(6): 065202.

    Article  Google Scholar 

  29. Jamshed W, Kumar V, Kumar V. Computational examination of Casson nanofluid due to a non-linear stretching sheet subjected to particle shape factor: Tiwari and Das model. Numer Methods Partial Differ Equ. 2022;38(4):848–75.

    Article  Google Scholar 

  30. Rashid U, Iqbal A, Alsharif A. Shape effect of nanoparticles on nanofluid flow containing gyrotactic microorganisms. Comput Model Eng Sci, 2022; 134

  31. Akbar AA, Ahammad NA, Awan AU, Hussein AK, Gamaoun F, Tag-ElDin EM, Ali B. Insight into the role of nanoparticles shape factors and diameter on the dynamics of rotating water-based fluid. Nanomaterials. 2022;12(16):2801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shahzad A, Liaqat F, Ellahi Z, Sohail M, Ayub M, Ali MR. Thin film flow and heat transfer of Cu-nanofluids with slip and convective boundary condition over a stretching sheet. Sci Rep. 2022;12(1):14254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ananth Subray P, Hanumagowda B, Varma S, Hatami M. The impacts of shape factor and heat transfer on two-phase flow of nano and hybrid nanofluid in a saturated porous medium. Sci Rep. 2022;12(1):21864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alabdulhadi S, Abu Bakar S, Ishak A, Waini I, Ahmed SE. Effect of Buoyancy force on an unsteady thin film flow of \({\rm Al}_2\,{\rm O}_3\)/water nanofluid over an inclined stretching sheet. Mathematics. 2023;11(3):739.

    Article  Google Scholar 

  35. Sandeep N, Malvandi A. Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles. Adv Powder Technol. 2016;27(6):2448–56.

    Article  CAS  Google Scholar 

  36. Khan NS, Islam S, Gul T, Khan I, Khan W, Ali L. Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer. Alex Eng J. 2018;57(2):1019–31.

    Article  Google Scholar 

  37. Sulochana C, Samrat S, Sandeep N. Magnetohydrodynamic radiative liquid thin film flow of kerosene based nanofluid with the aligned magnetic field. Alex Eng J. 2018;57(4):3009–17.

    Article  Google Scholar 

  38. Ullah A, Shah Z, Kumam P, Ayaz M, Islam S, Jameel M. Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation. Processes. 2019;7(5):262.

    Article  CAS  Google Scholar 

  39. Ali R, Shahzad A, Saher K, Elahi Z, Abbas T. The thin film flow of \({\rm Al}_2\,{\rm O}_3\) nanofluid particle over an unsteady stretching surface. Case Stud Therm Eng. 2022;29: 101695.

    Article  Google Scholar 

  40. Tahir SA, Rafaqat M, Hussan M, Azam M. Mixed convection flow of lower convected second grade with unsteady mhd nanofluid over a stretching surface in porous medium. Int J Modern Phys B, 2023; 2350281

  41. Sajid T, Jamshed W, Shahzad F, Akgül EK, Nisar KS, Eid MR. Impact of gold nanoparticles along with Maxwell velocity and Smoluchowski temperature slip boundary conditions on fluid flow: Sutterby model. Chin J Phys. 2022;77:1387–404.

    Article  Google Scholar 

  42. Awan AU, Shah SAA, Ali B. Bio-convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet. Chin J Phys. 2022;77:2795–810.

    Article  Google Scholar 

  43. Hayat U, Shaiq S, Shahzad A, Khan R, Kamran M, Shah NA. The effect of particle shape on flow and heat transfer of Ag-nanofluid along stretching surface. Chin J Phys 2023;

  44. Upreti H, Pandey AK, Kumar M. MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption. Alex Eng J. 2018;57(3):1839–47.

    Article  Google Scholar 

  45. Gnaneswara Reddy M, Punith Gowda R, Naveen Kumar R, Prasannakumara B, Ganesh Kumar K. Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes. Proc Inst Mech Eng Part E J Process Mech Eng. 2021;235(5):1259–68.

    Article  CAS  Google Scholar 

  46. Gowda RP, Kumar RN, Rauf A, Prasannakumara B, Shehzad S. Magnetized flow of sutterby nanofluid through cattaneo-christov theory of heat diffusion and stefan blowing condition. Appl Nanosci. 2023;13(1):585–94.

    Article  CAS  Google Scholar 

  47. Zhou S-S, Khan MI, Qayyum S, Prasannakumara B, Kumar RN, Khan SU, Gowda RP, Chu Y-M. Nonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganisms. Int J Mod Phys B. 2021;35(12):2150145.

    Article  CAS  Google Scholar 

  48. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52(21–22):4675–82.

    Article  CAS  Google Scholar 

  49. Shampine LF, Gladwell I, Thompson S. Solving ODEs with matlab. Cambridge: Cambridge University Press; 2003.

    Book  Google Scholar 

  50. Li J, Liu L, Zheng L, Bin-Mohsin B. Unsteady MHD flow and radiation heat transfer of nanofluid in a finite thin film with heat generation and thermophoresis. J Taiwan Inst Chem Eng. 2016;67:226–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rushi Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomathy, G., Kumar, B.R. Impacts of nanoparticle shapes on Ag-water nanofluid thin film flow through a porous medium with thermal radiation and ohmic heating. J Therm Anal Calorim (2023). https://doi.org/10.1007/s10973-023-12609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-023-12609-z

Keywords

Navigation