Skip to main content
Log in

Crystallization and melting behavior of poly(ether ketone ketone) (PEKK) copolymers synthesized by facile one-step method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(ether ketone ketone) (PEKK) is a thermoplastic with excellent performance. To date, most PEKK copolymers are synthesized by a two-step method. However, in this work, a series of PEKK copolymers with diverse T/I (terephthaloyl/isophthaloyl) ratios were firstly synthesized by a facial one-step method. Then, the structure of PEKK copolymers was characterized and the crystallization and melting behavior were studied in detail. With the increase in meta isomers in the structure, the crystallization ability and melting point of copolymers reduced, as confirmed by non-isothermal and isothermal crystallization kinetics analysis. Furthermore, the double melting behavior of PEKK copolymers after isothermal annealing was researched employing differential scanning calorimetry (DSC) and temperature-modulated DSC (TMDSC). Unlike many other outcomes, our study demonstrate that the double melting behavior is mainly related to the superimposition of rigid amorphous devitrification and enthalpy relaxation. Finally, through the self-nucleation experiment of PEKK70 and PEKK80, the ideal self-nucleation temperatures (Ts,ideal) corresponding to the copolymers were determined, then the successive self-nucleation and annealing (SSA) technology was employed to analyze PEKK copolymers for the first time, and thermal classification was successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Garcia-Gonzalez D, Rodriguez-Millan M, Rusinek A, Arias A. Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites. Compos Struct. 2015;133:1116–26. https://doi.org/10.1016/j.compstruct.2015.08.028.

    Article  Google Scholar 

  2. Hassan EAM, Ge D, Yang L, Zhou J, Liu M, Yu M, Zhu S. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF. Compos A Appl Sci Manuf. 2018;112:155–60. https://doi.org/10.1016/j.compositesa.2018.05.029.

    Article  CAS  Google Scholar 

  3. Nassir N, Birch RS, Cantwell WJ, Wang QY, Liu LQ, Guan ZW. The perforation resistance of glass fibre reinforced PEKK composites. Polym Test. 2018;72:423–31. https://doi.org/10.1016/j.polymertesting.2018.11.007.

    Article  CAS  Google Scholar 

  4. Perez-Martin H, Mackenzie P, Baidak A, Bradaigh CMO, Ray D. Crystallinity studies of PEKK and carbon fibre/PEKK composites: a review. Compos Part B Eng. 2021;223:109127. https://doi.org/10.1016/j.compositesb.2021.109127.

    Article  CAS  Google Scholar 

  5. Zhu K, Tan H, Wang Y, Liu C, Ma X, Wang J, Xing H. Crystallization and mechanical properties of continuous carbon fiber reinforced polyether-ether-ketone composites. Fibers Polym. 2019;20:839–46. https://doi.org/10.1007/s12221-019-8791-5.

    Article  CAS  Google Scholar 

  6. Wang W, Schultz JM, Hsiao BS. Dynamic study of crystallization- and melting-induced phase separation in PEEK/PEKK blends. Macromolecules. 1997;30:4544–50. https://doi.org/10.1021/ma970092l.

    Article  CAS  Google Scholar 

  7. Cheng SZD, Ho RM, Hsiao BS, Gardner KH. Polymorphism and crystal structure identification in poly(aryl ether ketone ketone)s. Macromol Chem Phys. 1996;197:185–213. https://doi.org/10.1002/macp.1996.021970115.

    Article  CAS  Google Scholar 

  8. Hsiao BS, Chang IY, Sauer BB. Isothermal crystallization kinetics of poly(ether ketone ketone) and its carbon-fiber-reinforced composites. Polymer. 1991;32:2799–805. https://doi.org/10.1016/0032-3861(91)90111-u.

    Article  CAS  Google Scholar 

  9. Hallam B. Aromatic polyketones and preparation thereof, US Pat 3065205; 1962.

  10. Colquhoun HM, Lewis DF. Synthesis of aromatic polyetherketones in trifluoromethanesulphonic acid. Polymer. 1988;29:1902–8. https://doi.org/10.1016/0032-3861(88)90410-7.

    Article  CAS  Google Scholar 

  11. Iwakura Y, Uno K, Takiguchi T. Syntheses of aromatic polyketones and aromatic polyamide. J Polym Sci A-1-Polym Chem. 1968;6:3345–55. https://doi.org/10.1002/pol.1968.150061213.

    Article  CAS  Google Scholar 

  12. Niume K, Toda F, Uno K, Iwakura Y. Catalytic Friedel-Crafts polyketone synthesis in PPA. J Polym Sci Polym Lett. 1977;15:283–6. https://doi.org/10.1002/pol.1977.130150505.

    Article  CAS  Google Scholar 

  13. Ueda M, Oda M. Synthesis of aromatic poly(ether ketone)s in phosphorus pentoxide methanesulfonic-acid. Polym J. 1989;21:673–9. https://doi.org/10.1295/polymj.21.673.

    Article  CAS  Google Scholar 

  14. Gay FP, Mary BC. Ordered polyetherketones, US Pat 4816556; 1989.

  15. Smith KJ, Towle IDH, Moloney MG. Spherical, particulate poly(ether ketone ketone) by a Friedel Crafts dispersion polymerisation. RSC Adv. 2016;6:13809–19. https://doi.org/10.1039/c5ra25253a.

    Article  CAS  Google Scholar 

  16. Gardner KH, Hsiao BS, Matheson RR, Wood BA. Structure, crystallization and morphology of poly (aryl ether ketone ketone). Polymer. 1992;33:2483–95. https://doi.org/10.1016/0032-3861(92)91128-o.

    Article  CAS  Google Scholar 

  17. Hsiao BS, Gardner KH, Cheng SZD. Crystallization of poly(aryl ether ketone ketone) copolymers containing terephthalate/isophthalate moieties. J Polym Sci Part B Polym Phys. 1994;32:2585–94. https://doi.org/10.1002/polb.1994.090321604.

    Article  CAS  Google Scholar 

  18. Gardner KH, Hisao BS, Faron KL. Polymorphism in poly(aryl ether ketone)s. Polymer. 1994;35:2290–5. https://doi.org/10.1016/0032-3861(94)90763-3.

    Article  CAS  Google Scholar 

  19. Song P, Chen G, Wei Z, Zhang W, Liang J. Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity. J Therm Anal Calorim. 2013;111:1507–14. https://doi.org/10.1007/s10973-012-2502-4.

    Article  CAS  Google Scholar 

  20. Di Lorenzo ML. Calorimetric analysis of the multiple melting behavior of poly(l-lactic acid). J Appl Polym Sci. 2006;100:3145–51. https://doi.org/10.1002/app.23136.

    Article  CAS  Google Scholar 

  21. Yasuniwa M, Lura K, Dan Y. Melting behavior of poly(l-lactic acid): effects of crystallization temperature and time. Polymer. 2007;48:5398–407. https://doi.org/10.1016/j.polymer.2007.07.012.

    Article  CAS  Google Scholar 

  22. Shieh Y-T, Liu G-L. Temperature-modulated differential scanning calorimetry studies on the origin of double melting peaks in isothermally melt-crystallized poly(l-lactic acid). J Polym Sci Part B Polym Phys. 2007;45:466–74. https://doi.org/10.1002/polb.21056.

    Article  CAS  Google Scholar 

  23. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci Part B Polym Phys. 2004;42:25–32. https://doi.org/10.1002/polb.10674.

    Article  CAS  Google Scholar 

  24. Kong Y, Hay JN. Multiple melting behaviour of poly(ethylene terephthalate). Polymer. 2003;44:623–33. https://doi.org/10.1016/s0032-3861(02)00814-5.

    Article  CAS  Google Scholar 

  25. Wang ZG, Hsiao BS, Sauer BB, Kampert WG. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer. 1999;40:4615–27. https://doi.org/10.1016/s0032-3861(99)00067-1.

    Article  CAS  Google Scholar 

  26. Bassett DC, Olley RH, Alraheil IAM. On crystallization phenomena in PEEK. Polymer. 1988;29:1745–54. https://doi.org/10.1016/0032-3861(88)90386-2.

    Article  CAS  Google Scholar 

  27. Lattimer MP, Hobbs JK, Hill MJ, Barham PJ. On the origin of the multiple endotherms in PEEK. Polymer. 1992;33:3971–3. https://doi.org/10.1016/0032-3861(92)90391-9.

    Article  CAS  Google Scholar 

  28. Lee YC, Porter RS, Lin JS. On the double-melting behavior of poly(ether ether ketone). Macromolecules. 1989;22:1756–60. https://doi.org/10.1021/ma00194a043.

    Article  CAS  Google Scholar 

  29. Tan SS, Su AH, Luo J, Zhou EL. Crystallization kinetics of poly(ether ether ketone) (PEEK) from its metastable melt. Polymer. 1999;40:1223–31. https://doi.org/10.1016/s0032-3861(98)00275-4.

    Article  CAS  Google Scholar 

  30. Tardif X, Pignon B, Boyard N, Schmelzer JWP, Sobotka V, Delaunay D, Schick C. Experimental study of crystallization of polyetheretherketone (PEEK) over a large temperature range using a nano-calorimeter. Polym Test. 2014;36:10–9. https://doi.org/10.1016/j.polymertesting.2014.03.013.

    Article  CAS  Google Scholar 

  31. Wei CL, Chen M, Yu FE. Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone). Polymer. 2003;44:8185–93. https://doi.org/10.1016/j.polymer.2003.10.009.

    Article  CAS  Google Scholar 

  32. Zhang ZY, Zeng HM. Effects of thermal-treatment on poly(ether ether ketone). Polymer. 1993;34:3648–52. https://doi.org/10.1016/0032-3861(93)90049-g.

    Article  CAS  Google Scholar 

  33. Chelaghma SA, De Almeida O, Margueres P, Passieux J-C, Perie J-N, Vinet A, Reine B. Identification of isothermal crystallization kinetics of poly(ether-ketone-ketone) based on spherulite growth measurements and enthalpic data. Polym Crystal. 2020;3:e1014. https://doi.org/10.1002/pcr2.10141.

    Article  CAS  Google Scholar 

  34. Choupin T, Fayolle B, Regnier G, Paris C, Cinquin J, Brule B. Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK) copolymer. Polymer. 2017;111:73–82. https://doi.org/10.1016/j.polymer.2017.01.033.

    Article  CAS  Google Scholar 

  35. Choupin T, Fayolle B, Regnier G, Paris C, Cinquin J, Brule B. A more reliable DSC-based methodology to study crystallization kinetics: application to poly(ether ketone ketone) (PEKK) copolymers. Polymer. 2018;155:109–15. https://doi.org/10.1016/j.polymer.2018.08.060.

    Article  CAS  Google Scholar 

  36. Choupin T, Fayolle B, Regnier G, Paris C, Cinquin J, Brule B. Macromolecular modifications of poly(etherketoneketone) (PEKK) copolymer at the melting state. Polym Degrad Stab. 2018;155:103–10. https://doi.org/10.1016/j.polymdegradstab.2018.07.005.

    Article  CAS  Google Scholar 

  37. Roland S, Moghaddam M, Tence-Girault S, Fayolle B. Evolution of mechanical properties of aged poly(ether ketone ketone) explained by a microstructural approach. Polym Degrad Stab. 2021;183:109412. https://doi.org/10.1016/j.polymdegradstab.2020.109412.

    Article  CAS  Google Scholar 

  38. Cortes LQ, Causse N, Dantras E, Lonjon A, Lacabanne C. Morphology and dynamical mechanical properties of poly ether ketone ketone (PEKK) with meta phenyl links. J Appl Polym Sci. 2016;133:43396. https://doi.org/10.1002/app.43396.

    Article  CAS  Google Scholar 

  39. Coulson M, Cortes LQ, Dantras E, Lonjon A, Lacabanne C. Dynamic rheological behavior of poly(ether ketone ketone) from solid state to melt state. J Appl Polym Sci. 2018;135:46456. https://doi.org/10.1002/app.46456.

    Article  CAS  Google Scholar 

  40. Arandia I, Mugica A, Zubitur M, Iturrospe A, Arbe A, Liu G, Wang D, Mincheva R, Dubois P, Mueller AJ. Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers. J Polym Sci Part B Polym Phys. 2016;54:2346–58. https://doi.org/10.1002/polb.24146.

    Article  CAS  Google Scholar 

  41. Arnal ML, Balsamo V, Ronca G, Sanchez A, Muller AJ, Canizales E, de Navarro CU. Applications of successive self-nucleation and annealing (SSA) to polymer characterization. J Therm Anal Calorim. 2000;59:451–70. https://doi.org/10.1023/a:1010137408023.

    Article  CAS  Google Scholar 

  42. Cordova ME, Lorenzo AT, Mueller AJ, Hoskins JN, Grayson SM. A comparative study on the crystallization behavior of analogous linear and cyclic poly(epsilon-caprolactones). Macromolecules. 2011;44:1742–6. https://doi.org/10.1021/ma200394h.

    Article  CAS  Google Scholar 

  43. Lorenzo AT, Arnal ML, Mueller AJ, Lin M-C, Chen H-L. SAXS/DSC analysis of the lamellar thickness distribution on a SSA thermally fractionated model polyethylene. Macromol Chem Phys. 2011;212:2009–16. https://doi.org/10.1002/macp.201100240.

    Article  CAS  Google Scholar 

  44. Mary Michell R, Mueller AJ, Deshayes G, Dubois P. Effect of sequence distribution on the isothermal crystallization kinetics and successive self-nucleation and annealing (SSA) behavior of poly(epsilon-caprolactone-co-epsilon-caprolactam) copolymers. Eur Polym J. 2010;46:1334–44. https://doi.org/10.1016/j.eurpolymj.2010.03.013.

    Article  CAS  Google Scholar 

  45. Mueller AJ, Lorenzo AT, Arnal ML. Recent advances and applications of “successive self-nucleation and annealing” (SSA) high speed thermal fractionation. Macromol Symp. 2009;277:207–14. https://doi.org/10.1002/masy.200950325.

    Article  CAS  Google Scholar 

  46. Mueller AJ, Michell RM, Perez RA, Lorenzo AT. Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications. Eur Polym J. 2015;65:132–54. https://doi.org/10.1016/j.eurpolymj.2015.01.015.

    Article  CAS  Google Scholar 

  47. Muller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30:559–603. https://doi.org/10.1016/j.progpolymsci.2005.03.001.

    Article  CAS  Google Scholar 

  48. Perez RA, Cordova ME, Lopez JV, Hoskins JN, Zhang B, Grayson SM, Mueller AJ. Nucleation, crystallization, Self-Nucleation and thermal fractionation of cyclic and linear poly(epsilon-caprolactone)s. React Funct Polym. 2014;80:71–82. https://doi.org/10.1016/j.reactfunctpolym.2013.10.013.

    Article  CAS  Google Scholar 

  49. Pomatto ME, Moore RB. Crystallization kinetics and equilibrium melting temperature of poly (ether ketone ketone) with high terephthalate content utilizing fast scanning calorimetry. Polymer. 2023;271:125810. https://doi.org/10.1016/j.polymer.2023.125810.

    Article  CAS  Google Scholar 

  50. Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer. 1983;24:953–8. https://doi.org/10.1016/0032-3861(83)90144-1.

    Article  CAS  Google Scholar 

  51. Jonas A, Legras R. Thermal-stability and crystallization of poly(aryl ether ether ketone). Polymer. 1991;32:2691–706. https://doi.org/10.1016/0032-3861(91)90095-z.

    Article  CAS  Google Scholar 

  52. Hoffman JD, Weeks JJ. Melting process and equilibrium melting temperature of polychlorotrifluoroethylene. Res Natl Bur stand. 1962;66:13–28. https://doi.org/10.6028/jres.066A.003.

    Article  Google Scholar 

  53. Ho RM, Cheng SZD, Hsiao BS, Gardner KH. Crystal morphology and phase identifications in poly(aryl ether ketone)s and their copolymers. 1. Polymorphism in PEKK. Macromolecules. 1994;27:2136–40. https://doi.org/10.1021/ma00086a023.

    Article  CAS  Google Scholar 

  54. Chen H, Cebe P. Investigation of the rigid amorphous fraction in Nylon-6. J Therm Anal Calorim. 2007;89:417–25. https://doi.org/10.1007/s10973-007-8215-4.

    Article  CAS  Google Scholar 

  55. Chen H, Cebe P. Vitrification and devitrification of rigid amorphous fraction of PET during quasi-isothermal cooling and heating. Macromolecules. 2009;42:288–92. https://doi.org/10.1021/ma802104a.

    Article  CAS  Google Scholar 

  56. Righetti MC, Tombari E. Crystalline, mobile amorphous and rigid amorphous fractions in poly(l-lactic acid) by TMDSC. Thermochim Acta. 2011;522:118–27. https://doi.org/10.1016/j.tca.2010.12.024.

    Article  CAS  Google Scholar 

  57. Righetti MC, Tombari E, Angiuli M, Di Lorenzo ML. Enthalpy-based determination of crystalline, mobile amorphous and rigid amorphous fractions in semicrystalline polymers—poly(ethylene terephthalate). Thermochim Acta. 2007;462:15–24. https://doi.org/10.1016/j.tca.2007.06.003.

    Article  CAS  Google Scholar 

  58. Song M, Hourston DJ. Temperature-modulated differential scanning calorimetry—IX. Some comments on the rigid amorphous fraction in semi-crystalline poly(ethylene terephthalate). J Therm Anal Calorim. 1998;54:651–7. https://doi.org/10.1023/a:1010163113898.

    Article  CAS  Google Scholar 

  59. Wei Z, Song P, Zhou C, Chen G, Chang Y, Li J, Zhang W, Liang J. Insight into the annealing peak and microstructural changes of poly(l-lactic acid) by annealing at elevated temperatures. Polymer. 2013;54:3377–84. https://doi.org/10.1016/j.polymer.2013.04.027.

    Article  CAS  Google Scholar 

  60. Xu H, Cebe P. Heat capacity study of isotactic polystyrene: dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules. 2004;37:2797–806. https://doi.org/10.1021/ma035961n.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by JS and PS; methodology was contributed by ZW; formal analysis and investigation were contributed by JS and PS; writing—original draft preparation was contributed by JS; writing—review and editing, was contributed by PS, ZW; resources were contributed by GL and QS; Supervision was contributed by ZW and YL.

Corresponding author

Correspondence to Zhiyong Wei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15566 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Song, P., Li, G. et al. Crystallization and melting behavior of poly(ether ketone ketone) (PEKK) copolymers synthesized by facile one-step method. J Therm Anal Calorim 148, 11727–11741 (2023). https://doi.org/10.1007/s10973-023-12518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12518-1

Keywords

Navigation