Skip to main content
Log in

Application of nanofluid flow in entropy generation and thermal performance analysis of parabolic trough solar collector: experimental and numerical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study investigates numerically and experimentally the flow and heat transfer characteristics of ZnO/EG-H2O nanofluid flow in a parabolic trough solar collector at different flow rates (between 20 lit h−1 and 80 lit h−1) and nanoparticle volume fractions (φ = 1%, 2%, 3%, 4%). The effects of changes in parameters such as absorbed and heat loss parameters, collector efficiency, useful energy, and temperature differences between outlet and inlet have been investigated in the context of experimental results. To obtain meaningful results in the numerical study, a non-uniform heat flux distribution on the collector absorber has been generated by the Monte Carlo Ray Tracing method (MCRT) using the commercial code SOLTRACE. Friction factor, entropy generation, PEC number, Nusselt number, and Bejan number are the parameters studied. The ZnO/EG-H2O nanofluid significantly improves the efficiency of the collector, based on the findings obtained. The highest usable energy has been obtained at the flow rate of 80 lit h−1 with 4% ZnO/EG-H2O nanofluid. The results suggest that the temperature differential rises when ZnO/H2O has been used compared to EG-H2O. Moreover, when ZnO/EG-H2O is used with the flow rate of 80 lit h−1 and a volume fraction of 4% of nanoparticles, the Nusselt number increases by about 100% compared to EG-H2O as the working fluid. There is a negligible increase in the overall entropy production when ZnO/EG-H2O is utilized as opposed to the base fluid. Thus, the greatest possible nf may be suggested for parabolic trough solar collector. The goal of this study is to use the findings of ZnO/EG-H2O nanofluid research to parabolic trough solar collectors. The experimental data show that compared to traditional fluid, utilizing nanofluid results in significantly improved thermal performance. In this situation, it seems that nanofluid would be the best option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A c :

Cross-sectional area of the absorber tube (m2)

c p :

Specific heat (J kg1 K1)

P :

Pressure (Pa)

T :

Temperature (K)

f :

Friction factor

Re :

Reynolds number

Eu :

Euler number

E c :

Eckert number

k :

Thermal conductivity coefficient (W m1 K1)

Be :

Bejan number

\({\dot{\text{S}}}_{\text{gen}}\) :

Entropy generation (W K1)

Nu :

Nusselt number

h :

Heat transfer coefficient (W m2 K1)

qʹʹ :

Heat flux (W m2)

\({\dot{\text{G}}}_{\text{T}}\) :

Solar radiation (W m2)

\(\Delta P\) :

Pressure difference (Pa)

L :

Length of the absorber tube (m)

W :

Width of the collector (m)

\({f}_{\text{d}}\) :

Focal length of the collector (m)

C :

Concentration ratio

\({\text{d}}_{\text{g}}\) :

Glass envelope diameter (m)

\({\text{d}}_{\text{a}}\) :

Absorber tube diameter (m)

\({\dot{\text{Q}}}_{\text{u}}\) :

Useful energy (W)

\(\dot{m}\) :

Mass flow rate (kg s1)

Pr :

Prandtl number

ϕ r :

Rim angle (degree)

ρ :

Density (kg m3)

\(\mu\) :

Viscosity (Pa s)

\(\phi\) :

Nanoparticle volume fraction

η :

Collector efficiency (−)

i :

Inlet

f :

Base fluid

np :

Nanoparticle

a :

Absorber tube

eff :

Effective

b :

Bulk

o :

Outlet

References

  1. Alhuyi Nazari M, Rungamornrat J, Prokop L, Blazek V, Misak S, Al-Bahrani M, et al. An updated review on integration of solar photovoltaic modules and heat pumps towards decarbonization of buildings. Energy Sustain Dev. 2023;72:230–42.

    Google Scholar 

  2. Assad M, Rosen MA. Design and Performance Optimization of Renewable Energy Systems. Academic Press; 2021.

    Google Scholar 

  3. Guedri K, Salem M, Assad MEH, Rungamornrat J, Malek Mohsen F, Buswig YM. PV/Thermal as promising technologies in buildings: a comprehensive review on exergy analysis. Sustain Multidiscip Dig Publ Instit. 2022;14:12298.

    CAS  Google Scholar 

  4. Kannan N, Vakeesan D. Solar energy for future world:-a review. Renew Sustain Energy Rev. 2016;62:1092–105.

    Google Scholar 

  5. Khatib T, Mohamed A, Sopian K. A review of solar energy modeling techniques. Renew Sustain Energy Rev. 2012;16:2864–9.

    CAS  Google Scholar 

  6. Upadhyay BH, Patel AJ, Ramana PV. A detailed review on solar parabolic trough collector. Int J Ambient Energy. 2022;43:176–96.

    Google Scholar 

  7. Jebasingh VK, Herbert GMJ. A review of solar parabolic trough collector. Renew Sustain Energy Rev. 2016;54:1085–91.

    Google Scholar 

  8. Abdulhamed AJ, Adam NM, Ab-Kadir MZA, Hairuddin AA. Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications. Renew Sustain Energy Rev. 2018;91:822–31.

    Google Scholar 

  9. Price H, Lupfert E, Kearney D, Zarza E, Cohen G, Gee R, et al. Advances in Parabolic trough solar power technology. J Sol Energy Eng. 2002;124:109–25.

    Google Scholar 

  10. Reddy KS, Ananthsornaraj C. Design, development and performance investigation of solar Parabolic Trough Collector for large-scale solar power plants. Renew Energy. 2020;146:1943–57.

    Google Scholar 

  11. Rehan MA, Ali M, Sheikh NA, Khalil MS, Chaudhary GQ, Rashid T, et al. Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions. Renew Energy. 2018;118:742–51.

    CAS  Google Scholar 

  12. Bellos E, Tzivanidis C. Parametric analysis and optimization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors. Energy Convers Manag. 2018;168:329–42.

    CAS  Google Scholar 

  13. Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30:231–95.

    CAS  Google Scholar 

  14. Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, et al. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng. 2003;125:170–6.

    CAS  Google Scholar 

  15. Krishna Y, Faizal M, Saidur R, Ng KC, Aslfattahi N. State-of-the-art heat transfer fluids for parabolic trough collector. Int J Heat Mass Transf. 2020;152: 119541.

    CAS  Google Scholar 

  16. Bellos E, Tzivanidis C, Antonopoulos KA. A detailed working fluid investigation for solar parabolic trough collectors. Appl Therm Eng. 2017;114:374–86.

    CAS  Google Scholar 

  17. Ghasemi SE, Ranjbar AA. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study. J Mol Liq. 2016;222:159–66.

    CAS  Google Scholar 

  18. Bellos E, Tzivanidis C, Tsimpoukis D. Optimum number of internal fins in parabolic trough collectors. Appl Therm Eng. 2018;137:669–77.

    Google Scholar 

  19. Gong X, Wang F, Wang H, Tan J, Lai Q, Han H. Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting. Sol Energy. 2017;144:185–202.

    Google Scholar 

  20. Bellos E, Tzivanidis C, Tsimpoukis D. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renew Sustain Energy Rev. 2018;91:358–75.

    CAS  Google Scholar 

  21. Siva Subramanian R, Kumaresan G, Palanivel R, Nishanth kalathil Nirmal B, P. Comparative performance analysis of parabolic trough solar collector by varying absorber surface. Mater Today Proc. 2021;45:1217–21.

    CAS  Google Scholar 

  22. Tripathy AK, Ray S, Sahoo SS, Chakrabarty S. Structural analysis of absorber tube used in parabolic trough solar collector and effect of materials on its bending: a computational study. Sol Energy. 2018;163:471–85.

    CAS  Google Scholar 

  23. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles [Internet]. Argonne National Lab. (ANL), Argonne, IL (United States); 1995 Oct. Report No.: ANL/MSD/CP-84938; CONF-951135–29. Available from: https://www.osti.gov/biblio/196525

  24. Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196:89–101.

    CAS  Google Scholar 

  25. Li Q, Xuan Y. Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E Technolgical Sci. 2002;45:408–16.

    CAS  Google Scholar 

  26. Philip J, Shima PD, Raj B. Nanofluid with tunable thermal properties. Appl Phys Lett. 2008;92:043108.

    Google Scholar 

  27. Abdul Hakeem AK, Ragupathi P, Saranya S, Ganga B. Three dimensional non-linear radiative nanofluid flow over a riga plate. J Appl Comput Mech. 2019. https://doi.org/10.22055/jacm.2019.30095.1678.

    Article  Google Scholar 

  28. Al-Mdallal QM, Indumathi N, Ganga B, Abdul Hakeem AK. Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field. Case Stud Therm Eng. 2020;17: 100571.

    Google Scholar 

  29. Govindaraju M, Akilesh M, Abdul Hakeem AK. Analysis of entropy generation for nanofluid flow over a stretching sheet with an inclined magnetic field and uniform heat source/sink. J Phys Conf Ser. 2018;1139: 012010.

    Google Scholar 

  30. Hakeem AKA, Govindaraju M, Ganga B, Jayaprakash R. Effect of entropy generation in viscoelastic fluid over a stretching surface with non-uniform heat source/sink and thermal radiation. Int J Appl Eng Res. 2018;13(23):16485–93.

    Google Scholar 

  31. Hakeem AKA, Indumathi N, Ganga B, Nayak MK. Comparison of disparate solid volume fraction ratio of hybrid nanofluids flow over a permeable flat surface with aligned magnetic field and Marangoni convection. Sci Iran. 2020;27(6):3367–80.

    Google Scholar 

  32. Nayak MK, Abdul Hakeem AK, Ganga B, Ijaz Khan M, Waqas M, Makinde OD. Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport. Comput Methods Programs Biomed. 2020;186: 105131.

    CAS  PubMed  Google Scholar 

  33. Abdelsalam SI, Mekheimer KhS, Zaher AZ. Dynamism of a hybrid Casson nanofluid with laser radiation and chemical reaction through sinusoidal channels. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2058714.

    Article  Google Scholar 

  34. Bhatti MM, Abdelsalam SI. Scientific breakdown of a ferromagnetic nanofluid in hemodynamics: enhanced therapeutic approach. Math Model Nat Phenom EDP Sciences. 2022;17:44.

    CAS  Google Scholar 

  35. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137:267–87.

    CAS  Google Scholar 

  36. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134:2295–303.

    CAS  Google Scholar 

  37. Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2019;135:597–608.

    CAS  Google Scholar 

  38. Khakrah H, Shamloo A, Kazemzadeh HS. Determination of parabolic trough solar collector efficiency using nanofluid: a comprehensive numerical study. J Sol Energy Eng. 2017. https://doi.org/10.1115/1.4037092.

    Article  Google Scholar 

  39. de Risi A, Milanese M, Laforgia D. Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renew Energy. 2013;58:134–9.

    Google Scholar 

  40. Mwesigye A, Huan Z, Meyer JP. Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid. Energy Convers Manag. 2016;120:449–65.

    CAS  Google Scholar 

  41. Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. Int J Therm Sci. 2016;99:238–57.

    Google Scholar 

  42. Jamshed W, Eid MR, Al-Hossainy AF, Raizah Z, Tag El Din ESM, Sajid T. Experimental and TDDFT materials simulation of thermal characteristics and entropy optimized of Williamson Cu-methanol and Al2O3-methanol nanofluid flowing through solar collector. Sci Rep. Nature Publishing Group; 2022;12:18130.

  43. Liu P, Zheng N, Liu Z, Liu W. Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts. Energy Convers Manag. 2019;179:30–45.

    Google Scholar 

  44. Raafat PB, Ibrahim FN. Entropy and heat transfer investigation of Casson-Maxwell, Casson-Jeffrey, and Casson–Oldroyd-B binary nanofluids in a parabolic trough solar collector: a comparative study. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12003-9.

    Article  Google Scholar 

  45. Okonkwo EC, Abid M, Ratlamwala TAH, Abbasoglu S, Dagbasi M. Optimal analysis of entropy generation and heat transfer in parabolic trough collector using green-synthesized TiO2/water nanofluids. J Sol Energy Eng. 2018. https://doi.org/10.1115/1.4041847.

    Article  Google Scholar 

  46. Ebrahimi-Moghadam A, Mohseni-Gharyehsafa B, Farzaneh-Gord M. Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector. Renew Energy. 2018;129:473–85.

    CAS  Google Scholar 

  47. Cheng ZD, He YL, Cui FQ, Xu RJ, Tao YB. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Sol Energy. 2012;86:1770–84.

    Google Scholar 

  48. Günther M, Joemann M, Csambor S. Advanced CSP Teaching Materials Chapter 5 Parabolic Trough Technology. Adv CSP Teach Mater. Germany: Enermena; 2011.

  49. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279:71–6.

    CAS  PubMed  Google Scholar 

  50. Nohavica D, Gladkov P. ZnO Nanoparticles and Their Applications–New Achievments. 2022.

  51. Kaya H, Arslan K, Eltugral N. Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids. Renew Energy. 2018;122:329–38.

    CAS  Google Scholar 

  52. DeWinter F. Solar Collectors, Energy Storage, and Materials. MIT Press; 1990.

    Google Scholar 

  53. Holman JP. Experimental Methods for Engineers. 8th ed. Mc-Graw Hill; 2011.

    Google Scholar 

  54. Bejan A. Convection Heat Transfer. 4th ed. Hoboken, New Jersey: John Wiley & Sons; 2013.

    Google Scholar 

  55. Wendelin T. SolTRACE: a new optical modeling tool for concentrating solar optics. 2003:253–60.

  56. Mwesigye A, Meyer JP. Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl Energy. 2017;193:393–413.

    CAS  Google Scholar 

  57. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    CAS  Google Scholar 

  58. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    CAS  Google Scholar 

  59. Mishra PC, Mukherjee S, Nayak SK, Panda A. A brief review on viscosity of nanofluids. Int Nano Lett. 2014;4:109–20.

    CAS  Google Scholar 

  60. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    CAS  Google Scholar 

  61. Incropera F, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. 6th ed. New York: John Wiley and Sons; 2007.

    Google Scholar 

  62. Korres D, Bellos E, Tzivanidis C. Investigation of a nanofluid-based compound parabolic trough solar collector under laminar flow conditions. Appl Therm Eng. 2019;149:366–76.

    CAS  Google Scholar 

  63. Ekiciler R, Samet Ali Çetinkaya M. A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Therm Sci Eng Prog. 2021;23:100913.

    CAS  Google Scholar 

  64. Mwesigye A, Bello-Ochende T, Meyer JP. Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios. Energy. 2013;53:114–27.

    Google Scholar 

  65. Mahmud S, Fraser RA. Magnetohydrodynamic free convection and entropy generation in a square porous cavity. Int J Heat Mass Transf. 2004;47:3245–56.

    Google Scholar 

  66. Subramani J, Nagarajan PK, Wongwises S, El-Agouz SA, Sathyamurthy R. Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2 O3 nanofluids. Environ Prog Sustain Energy. 2018;37:1149–59.

    CAS  Google Scholar 

  67. Deng Y, Zhao Y, Wang W, Quan Z, Wang L, Yu D. Experimental investigation of performance for the novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC). Appl Therm Eng. 2013;54:440–9.

    Google Scholar 

  68. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39:293–8.

    CAS  Google Scholar 

  69. Akram N, Sadri R, Kazi SN, Ahmed SM, Zubir MNM, Ridha M, et al. An experimental investigation on the performance of a flat-plate solar collector using eco-friendly treated graphene nanoplatelets–water nanofluids. J Therm Anal Calorim. 2019;138:609–21.

    CAS  Google Scholar 

  70. Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.

    CAS  Google Scholar 

  71. Sharafeldin MA, Gróf G. Efficiency of evacuated tube solar collector using WO3/Water nanofluid. Renew Energy. 2019;134:453–60.

    CAS  Google Scholar 

  72. Iranmanesh S, Ong HC, Ang BC, Sadeghinezhad E, Esmaeilzadeh A, Mehrali M. Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid. J Clean Prod. 2017;162:121–9.

    CAS  Google Scholar 

  73. Ekiciler R, Arslan K, Turgut O, Kurşun B. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. J Therm Anal Calorim. 2021;143:1637–54.

    CAS  Google Scholar 

  74. Saleh B, Sundar LS. Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. Int J Therm Sci. 2021;165: 106935.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Karabuk University Coordinatorship of the Scientific Research Projects for providing financial support for this study under the KBUBAP-FDK-2020-2277 project. Also, the authors thank Assoc. Prof. Dr. Engin Gedik for her valuable comments and guidance during the execution of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recep Ekiciler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekiciler, R., Arslan, K. & Turgut, O. Application of nanofluid flow in entropy generation and thermal performance analysis of parabolic trough solar collector: experimental and numerical study. J Therm Anal Calorim 148, 7299–7318 (2023). https://doi.org/10.1007/s10973-023-12187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12187-0

Keywords

Navigation