Skip to main content
Log in

Thermo-mechanical analysis of uniform, clustered and interpenetrating phase particulate composites using finite element method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the approach for thermo-mechanical analysis of particulate composites having uniform, clustered and interpenetrating phase distribution of particles has been proposed. This study investigates the effects of convection cooling rate on the generated thermal residual stresses in metal matrix composites using a sequential coupled transient heat conduction analysis. FE simulations are conducted on 3D RVEs, and the predicted elastic modulus has been compared with the reported experimental values and also with the Mori–Tanaka and Double-inclusion models. In addition to the effective mechanical properties of composites, the thermal residual stresses are also computed by simulating the processing conditions of composites. We observed that for composites having high volume fraction of reinforcement and a high particle to matrix stiffness ratio (Ep/Em > 8), the Mori–Tanaka predictions are off the mark, while the double inclusion model shows good agreement with FE predictions. The interpenetration phase composites having 25% or more volume fraction result in enhanced effective properties. Our study reveals that the thermal residual stresses increase sharply as the molten metal changes its phase during transient cooling process. A high convection coefficient during composite cooling process results in substantially high thermal residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aboudi J. Mechanics of composite materials, A unified micromechanical approach. Amsterdam: Elsevier; 1991.

    Google Scholar 

  2. Hori M, Nemat-Nasser S. On two micromechanics theories for determining micro–macro relations in heterogeneous solids. Mech Mater. 1999;31:667–82.

    Article  Google Scholar 

  3. Sharma NK. Finite element modelling and simulations on effective thermal conductivity of particulate composites. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10756-9.

    Article  Google Scholar 

  4. Sharma NK, Misra RK, Sharma S. Finite element modeling of effective thermomechanical properties of Al–B4C metal matrix composites. J Mater Sci. 2017;52:1416–31.

    Article  CAS  Google Scholar 

  5. Hashin Z, Shtrikman S. A variational approach to the theory of elastic behavior of multiphase materials. J Mech Phys Solids. 1963;11:127–40.

    Article  Google Scholar 

  6. Benveniste Y. A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater. 1987;6(2):147–57.

    Article  Google Scholar 

  7. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–4.

    Article  Google Scholar 

  8. Ashton JE, Halpin JC, Petit PH. Primer on composite materials: analysis. Stamford (Conn): Technomic Pub. Co.; 1969.

    Google Scholar 

  9. Halpin JC. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater. 1969;3(4):732–4.

    Article  Google Scholar 

  10. Fornes TD, Paul DR. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer. 2003;44(17):4993–5013.

    Article  CAS  Google Scholar 

  11. Li X, Gao H, Scrivens WA, Fei D, Xu X, Sutton MA, et al. Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites. J Nano Sci Nano Technol. 2007;7(7):2309–17.

    Article  CAS  Google Scholar 

  12. Luo J-J, Daniel IM. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol. 2003;63(11):1607–16.

    Article  CAS  Google Scholar 

  13. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer. 2004;45(2):487–506.

    Article  CAS  Google Scholar 

  14. Zeng QH, Yu AB, Lu GQ. Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci. 2008;33(2):191–269.

    Article  CAS  Google Scholar 

  15. Mortazavi B, Baniassadi M, Bardon J, Ahzi S. Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods. Comp B. 2013;45:1117–25.

    Article  CAS  Google Scholar 

  16. Sharma NK, Misra RK, Sharma S. Modeling of thermal expansion behavior of densely packed Al/SiC composites. Int J Sol Struc. 2016;102–103:77–88.

    Article  Google Scholar 

  17. Sharma NK, Misra RK. Sharma Satpal, thermal expansion behavior of Ni–Al2O3 composites with particulate and interpenetrating phase structures: an analysis using finite element method. Comp Mater Sci. 2014;90:130–6.

    Article  CAS  Google Scholar 

  18. Gudlur P, Muliana A, Radovic M. Effective thermo-mechanical properties of aluminum–alumina composites using numerical approach. Compos Part B. 2013;58:534–43.

    Article  Google Scholar 

  19. Reid ACE, Lua RC, Garcia RE, Coffman VR, Langer SA. Modeling microstructures with OOF2. Int J Mater and Prod Tech. 2009;35:361–73.

    Article  CAS  Google Scholar 

  20. Peng Z, Fuguo L. Effects of particle clustering on the flow behavior of SiC particle reinforced Al metal matrix composites. Rare Metal Mater Eng. 2010;39(9):1525–31.

    Article  Google Scholar 

  21. Abedini A, Butcher C, Chen ZT. Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites. Comput Mater Sci. 2013;73:15–23.

    Article  Google Scholar 

  22. Yishi Su, Ouyang Q, Zhang W, Li Z, Guo Q, Fan G, Zhang Di. Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites. Mater Sci Eng A. 2014;597:359–69.

    Article  Google Scholar 

  23. Cheng F, Kim SM, Reddy JN, Rashid K, Al-Rub A. Modeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolution. Int J Plast. 2014;61:94–111.

    Article  CAS  Google Scholar 

  24. Bruck HA, Rabin BH. Evaluation of rule-of-mixtures predictions of thermal expansion in powder-processed Ni–Al2O3 composites. J Am Ceram Soc. 1999;82(10):2927–30.

    Article  CAS  Google Scholar 

  25. Huber T, Degischer HP, Lefranc G, Schmitt T. Thermal expansion studies of aluminum-matrix composites with different reinforced architecture of SiC particles. Comp Sci Technol. 2006;66:2206–17.

    Article  CAS  Google Scholar 

  26. Ma YE, Staron P, Fischer T, Irving PE. Size effects on residual stress and fatigue crack growth in friction stir welded 2195–T8 aluminium – Part I: experiments. Int J Fatigue. 2011;33(11):1417–25.

    Article  CAS  Google Scholar 

  27. Schöbel M, Baumgartner G, Gerth S, Bernardi J, Hofmann M. Microstresses and crack formation in AlSi7MgCu and AlSi17Cu4 alloys for engine components. Acta Mater. 2014;81:401–8.

    Article  Google Scholar 

  28. Zhang XX, Xiao BL, Andrä H, Ma ZY. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models. Compos Struct. 2016;137:18–32.

    Article  Google Scholar 

  29. Moosbrugger C. Atlas of stress–strain curves. 2nd ed. Almere: ASM International; 2002.

    Google Scholar 

  30. Shen H, Lissenden CJ. 3D finite element analysis of particle-reinforced aluminium. Mater Sci Eng. 2002;338(1):271–81.

    Article  Google Scholar 

  31. Khan KA, Barello R, Muliana HA, Lévesque M. Coupled heat conduction and thermal stress analyses in particulate composites. Mech Mater. 2011;43:608–25.

    Article  Google Scholar 

  32. Zhao B, Ren Yi, Gao D, Lizhi Xu. Performance ratio prediction of photovoltaic pumping system based on grey clustering and second curvelet neural network. Energy. 2019;171:360–71.

    Article  Google Scholar 

  33. Zhao B, Ren Yi, Gao D, Lizhi Xu, Zhang Y. Energy utilization efficiency evaluation model of refining unit based on contourlet neural network optimized by improved grey optimization algorithm. Energy. 2019;185:1032–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N.K. Thermo-mechanical analysis of uniform, clustered and interpenetrating phase particulate composites using finite element method. J Therm Anal Calorim 148, 5967–5984 (2023). https://doi.org/10.1007/s10973-023-12157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12157-6

Keywords

Navigation