Skip to main content
Log in

Agglomeration behavior of lignocellulosic biomasses in fluidized bed gasification: a comprehensive review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gasification of lignocellulosic biomass in a fluidized bed gasifier is a preferred option for gaseous fuel generation and solid waste management. Erosion, slagging and agglomeration limit the wide adoption of this process. Agglomeration needs serious attention as it leads to defluidization and plant shut down. The present study considers the various aspects of agglomerate formation by the interaction of the inorganic elements (K, Na, Ca) and bed materials. Inexpensive and widely used bed material like silica sand is prone to agglomeration due to the formation of lower-melting alkali silicates. The mechanism involving the formation of agglomerates and ash behavior has been reviewed. K2SiO3 is the commonly formed lower-melting eutectic by the reaction of bed materials and compounds like KCl, K2SO4 and K2CO3 present in the bed. Investigations on various bed materials and their combined effects on bed agglomeration are summarized in this paper. Among the preventive measures, the use of different types of bed materials plays a vital role in the reduction of agglomerate formation, thereby increasing fluidization time. Olivine, dolomite, alumina sand, mullite, etc. are identified as some of the alternatives to the conventional bed materials. The detection of agglomeration using various experimental and online methods is also reviewed. This could further help in the abatement of agglomeration in the reactor without affecting process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bilgili F, Koçak E, Bulut Ü, Kuşkaya S. Can biomass energy be an efficient policy tool for sustainable development? Renew Sustain Energy Rev. 2017;71:830–45.

    Article  Google Scholar 

  2. Abd El Aziz Y. Renewables 2022 Global Status Report Germany Factsheet [Internet]. 2022. Available from: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Fact_Sheet_Germany.pdf

  3. Dasappa S, Sridhar HV, Sridhar G, Paul PJ, Mukunda HS. Biomass gasification - A substitute to fossil fuel for heat application. Biomass Bioenerg. 2003;25:637–49.

    Article  CAS  Google Scholar 

  4. Sasaki N, Knorr W, Foster DR, Etoh H, Ninomiya H, Chay S, et al. Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020. Appl Energy. 2009;86:140–50. https://doi.org/10.1016/j.apenergy.2009.04.015.

    Article  Google Scholar 

  5. Basu P. Biomass gasification and pyrolysis: practical design and theory. Armsterdam: Elsevier; 2010. https://doi.org/10.1016/C2009-0-20099-7.

    Book  Google Scholar 

  6. Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G, et al. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresour Technol. 2022;344:126195. https://doi.org/10.1016/j.biortech.2021.126195.

    Article  CAS  PubMed  Google Scholar 

  7. Ferreira CRN, Infiesta LR, Monteiro VAL, Starling MCVM, da Silva Júnior WM, Borges VL, et al. Gasification of municipal refuse-derived fuel as an alternative to waste disposal: process efficiency and thermochemical analysis. Process Saf Environ Prot. 2021;149:885–93.

    Article  CAS  Google Scholar 

  8. Mohammed IY, Abakr YA, Xing Hui JN, Alaba PA, Morris KI, Ibrahim MD. Recovery of clean energy precursors from Bambara groundnut waste via pyrolysis: kinetics, products distribution and optimisation using response surface methodology. J Clean Prod. 2017;164:1430–45.

    Article  CAS  Google Scholar 

  9. Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G. Small-scale biomass gasification systems for power generation (< 200 kW class): a review. Renew Sustain Energy Rev. 2020;117:109486. https://doi.org/10.1016/j.rser.2019.109486.

    Article  CAS  Google Scholar 

  10. Silaen A, Wang T. Investigation of the coal gasification process under various operating conditions inside a two-stage entrained flow gasifier. J Therm Sci Eng Appl. 2012. https://doi.org/10.1115/1.4005603.

    Article  Google Scholar 

  11. Motta IL, Miranda NT, Maciel Filho R, Wolf Maciel MR. Biomass gasification in fluidized beds: a review of biomass moisture content and operating pressure effects. Renew Sustain Energy Rev. 2018;94:998–1023.

    Article  CAS  Google Scholar 

  12. Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38:449–67. https://doi.org/10.1016/j.pecs.2012.03.002.

    Article  CAS  Google Scholar 

  13. Demirbas A. Biofuels securing the planet’s future energy needs. Energy Convers Manag. 2009;50:2239–49.

    Article  CAS  Google Scholar 

  14. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89:913–33.

    Article  CAS  Google Scholar 

  15. Alonso DM, Wettstein SG, Dumesic JA. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev. 2012;41:8075–98.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng Y, Zhao J, Xu F, Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci. 2014;42:35–53.

    Article  Google Scholar 

  17. Trubetskaya A. Reactivity effects of inorganic content in biomass gasification: a Review. Energies. 2022. https://doi.org/10.3390/en15093137.

    Article  Google Scholar 

  18. George J, Arun P, Muraleedharan C. Region-specific biomass feedstock selection for gasification using multi-attribute decision-making techniques. Int J Sustain Eng. 2020. https://doi.org/10.1080/19397038.2020.1790058.

    Article  Google Scholar 

  19. Poyilil S, Palatel A, Chandrasekharan M. Physico - chemical characterization study of coffee husk for feasibility assessment in fluidized bed gasification process. Environ Sci Pollut Res. 2021. https://doi.org/10.1007/s11356-021-17048-7.

    Article  Google Scholar 

  20. Karatas H, Akgun F. Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel. 2018;214:285–92.

    Article  CAS  Google Scholar 

  21. Nguyen NM, Alobaid F, May J, Peters J, Epple B. Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor. Energy. 2022;202:117744.

    Article  Google Scholar 

  22. Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohammad Amran MS, Fakhru’L-Razi A. Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Convers Manag. 2011;52:1555–61. https://doi.org/10.1016/j.enconman.2010.10.023.

    Article  CAS  Google Scholar 

  23. Di Marcello M, Tsalidis GA, Spinelli G, de Jong W, Kiel JHA. Pilot scale steam-oxygen CFB gasification of commercial torrefied wood pellets. The effect of torrefaction on the gasification performance. Biomass Bioenergy. 2017;105:411–20.

    Article  Google Scholar 

  24. George J, Arun P, Muraleedharan C. Effect of operating parameters in air-steam gasification. J Adv Engg Res. 2017;4:89–93.

    Google Scholar 

  25. Suraj P, George J, Arun P, Muraleedharan C. Theoretical and experimental feasibility study of groundnut shell gasification in a fluidized bed gasifier. Biomass Conver Bioref. 2020;10(3):735–42.

    Article  CAS  Google Scholar 

  26. Yao X, Hu Y, Ge J, Ma X, Mao J, Sun L, et al. A comprehensive study on influence of operating parameters on agglomeration of ashes during biomass gasification in a laboratory-scale gasification system. Fuel. 2020;276:118083.

    Article  CAS  Google Scholar 

  27. Mendoza Martinez CL, Saari J, Melo Y, Cardoso M, de Almeida GM, Vakkilainen E. Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: a Brazilian case. Renew Sustain Energy Rev. 2021;137:110585. https://doi.org/10.1016/j.rser.2020.110585.

    Article  CAS  Google Scholar 

  28. Lin W, Dam-Johansen K, Frandsen F. Agglomeration in bio-fuel fired fluidized bed combustors. Chem Eng J. 2003;96:171–85.

    Article  CAS  Google Scholar 

  29. Kaknics J, Michel R, Richard A, Poirier J. High-temperature interactions between molten miscanthus ashes and bed materials in a fluidized-bed gasifier. Energy Fuel. 2015;29:1785–92.

    Article  CAS  Google Scholar 

  30. Kuo JH, Lin CL, Wey MY. Effect of agglomeration/defluidization on hydrogen generation during fluidized bed air gasification of modified biomass. Int J Hydrogen Energy. 2012;37:1409–17.

    Article  CAS  Google Scholar 

  31. Morris JD, Daood SS, Chilton S, Nimmo W. Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: a review. Fuel. 2018;230:452–73. https://doi.org/10.1016/j.fuel.2018.04.098.

    Article  CAS  Google Scholar 

  32. Chaivatamaset P, Sricharoon P, Tia S, Bilitewski B. The characteristics of bed agglomeration/defluidization in fluidized bed firing palm fruit bunch and rice straw. Appl Therm Eng. 2014;70:737–47.

    Article  CAS  Google Scholar 

  33. Ghaly AE, Ergüdenler A, Laufer E. Agglomeration characteristics of alumina sand-straw ash mixtures at elevated temperatures. Biomass Bioenerg. 1993;5:467–80.

    Article  CAS  Google Scholar 

  34. Chaivatamaset P, Tia S. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark. Appl Therm Eng. 2015;75:1134–46.

    Article  CAS  Google Scholar 

  35. Olofsson G, Ye Z, Bjerle I, Andersson A. Bed agglomeration problems in fluidized-bed biomass combustion. Ind Eng Chem Res. 2002;41:2888–94.

    Article  CAS  Google Scholar 

  36. Yao X, Mao J, Li L, Sun L, Xu K, Ma X, et al. Characterization comparison of bottom ash and fly ash during gasification of agricultural residues at an industrial-scale gasification plant – Experiments and analysis. Fuel. 2021;285:119122.

    Article  CAS  Google Scholar 

  37. George J, Arun P, Muraleedharan C. Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier. J Energy Inst. 2019;92:1977–86.

    Article  CAS  Google Scholar 

  38. Zevenhoven-Onderwater M, Backman R, Skrifvars BJ, Hupa M, Liliendahl T, Rosén C, et al. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash-bed material interaction. Fuel. 2001;80:1489–502.

    Article  CAS  Google Scholar 

  39. Sawatdeenarunat C, Nam H, Adhikari S, Sung S, Khanal SK. Decentralized biorefinery for lignocellulosic biomass: integrating anaerobic digestion with thermochemical conversion. Bioresour Technol. 2018;250:140–7. https://doi.org/10.1016/j.biortech.2017.11.020.

    Article  CAS  PubMed  Google Scholar 

  40. Fryda LE, Panopoulos KD, Kakaras E. Agglomeration in fluidised bed gasification of biomass. Powder Technol. 2008;181:307–20.

    Article  CAS  Google Scholar 

  41. Visser HJM, Van Lith SC, Kiel JHA. Biomass ash-bed material interactions leading to agglomeration in FBC. J Energy Resour Technol Trans ASME. 2008;130:0118011–6.

    Article  Google Scholar 

  42. Ryabov GA, Litun DS. Agglomeration during fluidized bed combustion and gasification of fuels. Therm Eng. 2019;66:635–51.

    Article  CAS  Google Scholar 

  43. Scala F. Particle agglomeration during fluidized bed combustion: mechanisms, early detection and possible countermeasures. Fuel Process Technol. 2018;171:31–8. https://doi.org/10.1016/j.fuproc.2017.11.001.

    Article  CAS  Google Scholar 

  44. Brus E, Öhman M, Nordin A. Mechanisms of bed agglomeration during fluidized-bed combustion of biomass fuels. Energy Fuel. 2005;19:825–32.

    Article  CAS  Google Scholar 

  45. Chaivatamaset P, Sricharoon P, Tia S. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed. Appl Therm Eng. 2011;31:2916–27. https://doi.org/10.1016/j.applthermaleng.2011.05.021.

    Article  Google Scholar 

  46. Natarajan E, Öhman M, Gabra M, Nordin A, Liliedahl T, Rao AN. Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification. Biomass Bioenerg. 1998;15:163–9.

    Article  CAS  Google Scholar 

  47. Link S, Yrjas P, Daniel Lindberg AT. Characterization of ash melting of reed and wheat straw blend. ACS Omega. 2022;7(2):2137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Visser HJM, Kiel JHA, Veringa HJ. The influence of fuel composition on agglomeration behavior in fluidised bed combustion Biochar assessment for horticultural rooting media View project. 2004;11. Available from: https://www.researchgate.net/publication/265493933

  49. Ma T, Fan C, Hao L, Li S, Jensen PA, Song W, et al. Biomass ash induced agglomeration in fluidized bed. Part 2: effect of potassium salts in different gas composition. Fuel Process Technol. 2018;180:130–9.

    Article  CAS  Google Scholar 

  50. Namkung H, Lee YJ, Park JH, Song GS, Choi JW, Kim JG, et al. Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors. Energy. 2019;187:115950. https://doi.org/10.1016/j.energy.2019.115950.

    Article  CAS  Google Scholar 

  51. Narayan V, Jensen PA, Henriksen UB, Egsgaard H, Nielsen RG, Glarborg P. Behavior of alkali metals and ash in a low-temperature circulating fluidized bed (LTCFB) gasifier. Energy Fuels. 2016;30:1050–61.

    CAS  Google Scholar 

  52. Niu Y, Tan H, Hui S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog Energy Combust Sci. 2016;52:1–61. https://doi.org/10.1016/j.pecs.2015.09.003.

    Article  Google Scholar 

  53. Kuba M, Skoglund N, Öhman M, Hofbauer H. A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds. Fuel. 2021;291:120214.

    Article  CAS  Google Scholar 

  54. Morris JD, Daood SS, Nimmo W. The use of kaolin and dolomite bed additives as an agglomeration mitigation method for wheat straw and miscanthus biomass fuels in a pilot-scale fluidized bed combustor. Renew Energy. 2022;196:749–62. https://doi.org/10.1016/j.renene.2022.06.151.

    Article  CAS  Google Scholar 

  55. Yang T, Jia K, Kai X, Sun Y, Li Y, Li R. A study on the migration behavior of K, Na, and Cl during biomass gasification. BioResources. 2016;11:7133–44.

    Article  CAS  Google Scholar 

  56. Doshi V, Vuthaluru HB, Korbee R, Kiel JHA. Development of a modeling approach to predict ash formation during co-firing of coal and biomass. Fuel Process Technol. 2009;90:1148–56. https://doi.org/10.1016/j.fuproc.2009.05.019.

    Article  CAS  Google Scholar 

  57. Nordgren D, Hedman H, Padban N, Boström D, Öhman M. Ash transformations in pulverised fuel co-combustion of straw and woody biomass. Fuel Process Technol. 2013;105:52–8. https://doi.org/10.1016/j.fuproc.2011.05.027.

    Article  CAS  Google Scholar 

  58. Ohman M, Nordin A. Bed agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy Fuels. 2000;14:169–78.

    Article  Google Scholar 

  59. Nuutinen LH, Tiainen MS, Virtanen ME, Enestam SH, Laitinen RS. Coating layers on bed particles during biomass fuel combustion in fluidized-bed boilers. Energy Fuels. 2004;18:127–39.

    Article  CAS  Google Scholar 

  60. Valmari T. Potassium behavior during combustion of wood in circulating fluidised bed power plants. VTT Publ. 2000.

  61. French RJ, Milne TA. Vapor phase release of alkali species in the combustion of biomass pyrolysis oils. Biomass Bioenerg. 1994;7:315–25.

    Article  CAS  Google Scholar 

  62. Dayton DC, French RJ, Milne TA. Direct observation of alkali vapor release during biomass combustion and gasification. 1. Application of molecular beam/mass spectrometry to switchgrass combustion. Energy Fuels. 1995;9:855–65.

    Article  CAS  Google Scholar 

  63. Gatternig B, Karl J. Investigations on the mechanisms of ash-induced agglomeration in fluidized-bed combustion of biomass. Energy Fuels. 2015;29:931–41.

    Article  CAS  Google Scholar 

  64. He ZM, Cao JP, Zhao XY. Review of biomass agglomeration for fluidized-bed gasification or combustion processes with a focus on the effect of alkali salts. Energy Fuels. 2022. https://doi.org/10.1021/acs.energyfuels.2c01183.

    Article  Google Scholar 

  65. Bartels M, Lin W, Nijenhuis J, Kapteijn F, van Ommen JR. Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention. Prog Energy Combust Sci. 2008;34:633–66.

    Article  CAS  Google Scholar 

  66. Miccio F, Murri AN, Medri V, Landi E. Utilization of fireclay for preventing fluidized-bed agglomeration during biomass thermochemical processing. Ind Eng Chem Res. 2019;58:23498–507.

    Article  CAS  Google Scholar 

  67. Berguerand N, Marinkovic J, Berdugo Vilches T, Thunman H. Use of alkali-feldspar as bed material for upgrading a biomass-derived producer gas from a gasifier. Chem Eng J. 2016;295:80–91.

    Article  CAS  Google Scholar 

  68. Yao X, Hu Y, Ge J, Ma X, Mao J, Sun L, et al. A comprehensive study on in fl uence of operating parameters on agglomeration of ashes during biomass gasi fi cation in a laboratory-scale gasi fi cation system. Fuel. 2020. https://doi.org/10.1016/j.fuel.2020.118083.

    Article  Google Scholar 

  69. Yao X, Xu K. Comparative study of characterization and utilization of corncob ashes from gasification process and combustion process. Constr Build Mater. 2016;119:215–22. https://doi.org/10.1016/j.conbuildmat.2016.04.077.

    Article  CAS  Google Scholar 

  70. Liao C, Wu C, Yan Y. The characteristics of inorganic elements in ashes from a 1 MW CFB biomass gasification power generation plant. Fuel Process Technol. 2007;88:149–56.

    Article  CAS  Google Scholar 

  71. Zevenhoven-Onderwater M, Backman R, Skrifvars BJ, Hupa M. The ash chemistry in fluidised bed gasification of biomass fuels. Part II: ash behavior prediction versus bench scale agglomeration tests. Fuel. 2001;80:1503–12.

    Article  CAS  Google Scholar 

  72. Maschowski C, Kruspan P, Garra P, Talib Arif A, Trouvé G, Gieré R. Physicochemical and mineralogical characterization of biomass ash from different power plants in the Upper Rhine Region. Fuel. 2019;258:116020. https://doi.org/10.1016/j.fuel.2019.116020.

    Article  CAS  PubMed  Google Scholar 

  73. Wu Y, Wu S, Gao YLJ. Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw. Energy Fuel. 2009;23:5144–50.

    Article  CAS  Google Scholar 

  74. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89:913–33. https://doi.org/10.1016/j.fuel.2009.10.022.

    Article  CAS  Google Scholar 

  75. Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z. Combustion of agricultural residues. Prog Energy Combust Sci. 2000;26:1–27.

    Article  CAS  Google Scholar 

  76. Scala F, Chirone R. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels. Biomass Bioenerg. 2008;32:252–66.

    Article  CAS  Google Scholar 

  77. Li L, Yu C, Huang F, Bai J, Fang M, Luo Z. Study on the deposits derived from a biomass circulating fluidized-bed boiler. Energy Fuels. 2012;26:6008–14.

    Article  CAS  Google Scholar 

  78. Prakash P, Sheeba KN. Prediction of pyrolysis and gasification characteristics of different biomass from their physico-chemical properties. Energy Sources, Part A Recover Util Environ Eff. 2016;38:1530–6. https://doi.org/10.1080/15567036.2014.953713.

    Article  CAS  Google Scholar 

  79. Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. 2004;30:219–30.

    Article  CAS  Google Scholar 

  80. Zhang H, Li J, Yang X, Guo S, Zhan H, Zhang Y, et al. Influence of coal ash on potassium retention and ash melting characteristics during gasification of corn stalk coke. Bioresour Technol. 2018;270:416–21. https://doi.org/10.1016/j.biortech.2018.09.053.

    Article  CAS  PubMed  Google Scholar 

  81. Yao X, Zhou H, Zhao Z, Xu K. Research on dependence of concentration and transformation of inorganics in biomass gasification ashes upon particle size classification. Powder Technol. 2020;371:1–12. https://doi.org/10.1016/j.powtec.2020.05.083.

    Article  CAS  Google Scholar 

  82. Mlonka-Mędrala A, Magdziarz A, Gajek M, Nowińska K, Nowak W. Alkali metals association in biomass and their impact on ash melting behavior. Fuel. 2020;261:116421. https://doi.org/10.1016/j.fuel.2019.116421.

    Article  CAS  Google Scholar 

  83. Grimm A, Skoglund N, Boström D, Öhman M. Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels. Energy Fuel. 2011;25:937–47.

    Article  CAS  Google Scholar 

  84. Ma T, Fan C, Hao L, Li S, Song W, Lin W. Fusion characterization of biomass ash. Thermochim Acta. 2016;638:1–9. https://doi.org/10.1016/j.tca.2016.06.008.

    Article  CAS  Google Scholar 

  85. Arvelakis S, Vourliotis P, Kakaras E, Koukios EG. Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion. Biomass Bioenerg. 2001;20:459–70.

    Article  CAS  Google Scholar 

  86. Arvelakis S, Gehrmann H, Beckmann M, Koukios EG. Preliminary results on the ash behavior of peach stones during fluidized bed gasification: Evaluation of fractionation and leaching as pre-treatments. Biomass Bioenerg. 2005;28:331–8.

    Article  CAS  Google Scholar 

  87. Howe D, Taasevigen D, Gerber M, Gray M, Fernandez C, Saraf L, et al. Bed agglomeration during the steam gasification of a high-lignin corn stover simultaneous saccharification and fermentation (SSF) digester residue. Energy Fuels. 2015;29:8035–46.

    Article  CAS  Google Scholar 

  88. Furuvik NCIS, Wang L, Jaiswal R, Thapa R, Eikeland MS, Moldestad BME. Experimental study and SEM-EDS analysis of agglomerates from gasi fi cation of biomass in fl uidized beds. Energy. 2022;252:124034. https://doi.org/10.1016/j.energy.2022.124034.

    Article  CAS  Google Scholar 

  89. Raveendravarrier B, Palatel A, Chandrasekharan M. Physico-chemical characterization of sewage sludge for thermochemical conversion processes. Energy Sources, Part A Recover Util Environ Eff. 2020. https://doi.org/10.1080/15567036.2020.1841858.

    Article  Google Scholar 

  90. Werle S. Sewage sludge as an environmental friendly energy source. Ecol Chem Eng A. 2013;20:279–86.

    CAS  Google Scholar 

  91. Liu ZS, Peng TH, Lin CL. Impact of CaO and CaCO3 addition on agglomeration/defluidization and heavy metal emission during waste combustion in fluidized-bed. Fuel Process Technol. 2014;118:171–9. https://doi.org/10.1016/j.fuproc.2013.09.001.

    Article  CAS  Google Scholar 

  92. Billen P, Costa J, Van Der Aa L, Westdorp L, Van Caneghem J, Vandecasteele C. An agglomeration index for CaO addition (as CaCO3) to prevent defluidization: application to a full-scale poultry litter fired FBC. Energy Fuels. 2014;28:5455–62.

    Article  CAS  Google Scholar 

  93. Zhang W, Huang S, Wu S, Wu Y, Gao J. Ash fusion characteristics and gasification activity during biomasses co-gasification process. Renew Energy. 2020;147:1584–94.

    Article  CAS  Google Scholar 

  94. Niu M, Dong Q, Huang Y, Jin B, Wang H, Gu H. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification. Waste Manag Res. 2018;36:415–25.

    Article  CAS  PubMed  Google Scholar 

  95. Michel R, Kaknics J, Bouchetou ML, Gratuze B, Balland M, Hubert J, et al. Physicochemical changes in Miscanthus ash on agglomeration with fluidized bed material. Chem Eng J. 2012;207–208:497–503. https://doi.org/10.1016/j.cej.2012.06.159.

    Article  CAS  Google Scholar 

  96. Reinmöller M, Schreiner M, Guhl S, Neuroth M, Meyer B. Formation and transformation of mineral phases in various fuels studied by different ashing methods. Fuel. 2017;202:641–9.

    Article  Google Scholar 

  97. Ghiasi E, Montes A, Ferdosian F, Tran H, Xu CC. Bed material agglomeration behavior in a bubbling fluidized bed (BFB) at high temperatures using KCl and K2SO4 as simulated molten ash. Int J Chem React Eng. 2018;16:1–13.

    Google Scholar 

  98. Shang L, Li S, Lu Q. Agglomeration characteristics of river sand and wheat stalk ash mixture at high temperatures. J Therm Sci. 2013;22:64–70.

    Article  CAS  Google Scholar 

  99. Kuba M, He H, Kirnbauer F, Boström D, Öhman M, Hofbauer H. Deposit build-up and ash behavior in dual fluid bed steam gasification of logging residues in an industrial power plant. Fuel Process Technol. 2015;139:33–41.

    Article  CAS  Google Scholar 

  100. Morris JD, Daood SS, Nimmo W. Agglomeration and the effect of process conditions on fluidized bed combustion of biomasses with olivine and silica sand as bed materials: Pilot-scale investigation. Biomass Bioenergy. 2020;142:105806.

    Article  CAS  Google Scholar 

  101. Rasmussen NBK, Aryal N. Syngas production using straw pellet gasi fi cation in fl uidized bed allothermal reactor under different temperature conditions. Fuel. 2019. https://doi.org/10.1016/j.fuel.2019.116706.

    Article  Google Scholar 

  102. Grimm A, Öhman M, Lindberg T, Fredriksson A, Boström D. Bed agglomeration characteristics in fluidized-bed combustion of biomass fuels using olivine as bed material. Energy Fuel. 2012;26:4550–9.

    Article  CAS  Google Scholar 

  103. Kuba M, Kirnbauer F, Hofbauer H. Influence of coated olivine on the conversion of intermediate products from decomposition of biomass tars during gasification. Biomass Convers Biorefinery. 2017;7:11–21.

    Article  CAS  Google Scholar 

  104. Vilches TB, Maric J, Thunman H, Seemann M. Mapping the effects of potassium on fuel conversion in industrial-scale fluidized bed gasifiers and combustors. Catalysts. 2021;11(11):1380.

    Article  Google Scholar 

  105. Savuto E, May J, Di Carlo A, Gallucci K, Di Giuliano A, Rapagnà S. Steam gasification of lignite in a bench-scale fluidized-bed gasifier using olivine as bed material. Appl Sci. 2020;10(8):2931.

    Article  CAS  Google Scholar 

  106. Moradian F, Tchoffor PA, Davidsson KO, Pettersson A, Backman R. Thermodynamic equilibrium prediction of bed agglomeration tendency in dual fluidized-bed gasification of forest residues. Fuel Process Technol. 2016;154:82–90.

    Article  CAS  Google Scholar 

  107. Faust R, Aonsamang P, Maric J, Tormachen A, Seemann M, Knutsson P. Interactions between automotive shredder residue and olivine bed material during indirect fluidized bed gasification. Energy Fuel. 2021. https://doi.org/10.1021/acs.energyfuels.1c02137.

    Article  Google Scholar 

  108. Faust R, Sattari M, Maric J, Seemann M, Knutsson P. Microscopic investigation of layer growth during olivine bed material aging during indirect gasification of biomass. Fuel. 2020;266:117076.

    Article  CAS  Google Scholar 

  109. Kirnbauer F, Hofbauer H. Investigations on bed material changes in a dual fluidized bed steam gasification plant in Güssing. Austria Energy Fuels. 2011;25:3793–8.

    Article  CAS  Google Scholar 

  110. Nisamaneenate J, Atong D, Seemen A, Sricharoenchaikul V. Mitigating bed agglomeration in a fluidized bed gasifier operating on rice straw. Energy Rep. 2020;6:275–85.

    Article  Google Scholar 

  111. Judex JW, Wellinger M, Ludwig C, Biollaz SMA. Gasification of hay in a bench scale fluidised bed reactor with emphasis on the suitability for gas turbines. Biomass Bioenerg. 2012;46:739–49.

    Article  CAS  Google Scholar 

  112. Weerachanchai P, Horio M, Tangsathitkulchai C. Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresour Technol. 2009;100:1419–27.

    Article  CAS  PubMed  Google Scholar 

  113. Ji X, Bie R, Chen P, Gu W. Reed black liquor combustion in fluidized bed for direct causticization with limestone as bed material. Energy Fuels. 2016;30:5791–8.

    Article  CAS  Google Scholar 

  114. Chi H, Pans MA, Sun C, Liu H. Effectiveness of bed additives in abating agglomeration during biomass air/oxy combustion in a fluidised bed combustor. Renew Energy. 2021;185:945–58.

    Article  Google Scholar 

  115. Zhou C, Rosén C, Engvall K. Fragmentation of dolomite bed material at pressurized conditions in the presence of H2O and CO2: implications for pressurized fluidized bed gasification. Fuel. 2021;285:119061.

    Article  CAS  Google Scholar 

  116. Kittivech T, Fukuda S. Empty fruit bunch (EFB) gasification in a bubbling fluidised bed system. Energies. 2019;12:4336–52.

    Article  CAS  Google Scholar 

  117. Lahijani P, Zainal ZA. Fluidized bed gasification of palm empty fruit bunch using various bed materials. Energy Sour, Part A Recover Util Environ Eff. 2014;36:2502–10.

    CAS  Google Scholar 

  118. Zhou C, Rosén C, Engvall K. Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: agglomeration behavior. Appl Energy. 2016;172:230–50.

    Article  CAS  Google Scholar 

  119. Hannl TK, Faust R, Kuba M, Knutsson P, Berdugo Vilches T, Seemann M, et al. Layer formation on feldspar bed particles during indirect gasification of wood. 2. Na-Feldspar. Energy Fuels. 2019;33:7333–46.

    Article  CAS  Google Scholar 

  120. Faust R, Hannl TK, Vilches TB, Kuba M, Öhman M, Seemann M, et al. Layer formation on feldspar bed particles during indirect gasification of wood. 1 K-Feldspar. Energy Fuels. 2019;33:7321–32.

    Article  CAS  Google Scholar 

  121. He H, Skoglund N, Öhman M. Time-dependent layer formation on K-Feldspar bed particles during fluidized bed combustion of woody fuels. Energy Fuels. 2017;31:12848–56.

    Article  CAS  Google Scholar 

  122. Wagner K, Häggström G, Skoglund N, Priscak J, Kuba M, Öhman M, et al. Layer formation mechanism of K-feldspar in bubbling fl uidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass. Appl Energy. 2020;248:545–54. https://doi.org/10.1016/j.apenergy.2019.04.112.

    Article  CAS  Google Scholar 

  123. Wagner K, Häggström G, Mauerhofer AM, Kuba M, Skoglund N, Öhman M, et al. Layer formation on K-feldspar in fluidized bed combustion and gasification of bark and chicken manure. Biomass Bioenergy. 2019;127:105251.

    Article  CAS  Google Scholar 

  124. Condori O, García-Labiano F, de Diego LF, Izquierdo MT, Abad A, Adánez J. Biomass chemical looping gasification for syngas production using ilmenite as oxygen carrier in a 1.5 kWth unit. Chem Eng J. 2021;405:126679. https://doi.org/10.1016/j.cej.2020.126679.

    Article  CAS  Google Scholar 

  125. Corcoran A, Marinkovic J, Lind F, Thunman H, Knutsson P, Seemann M. Ash properties of ilmenite used as bed material for combustion of biomass in a circulating fluidized bed boiler. Energy Fuels. 2014;28:7672–9.

    Article  CAS  Google Scholar 

  126. Van Eyk PJ, Kosminski A, Mullinger PJ, Ashman PJ. Control of agglomeration during circulating fluidized bed gasification of a south australian low-rank coal: pilot scale testing. Energy Fuels. 2016;30:1771–82.

    Article  Google Scholar 

  127. De Fusco L, Defoort F, Rajczyk R, Jeanmart H, Blondeau J, Contino F. Ash characterization of four residual wood fuels in a 100 KWth circulating fluidized bed reactor including the use of kaolin and halloysite additives. Energy Fuels. 2016;30:8304–15.

    Article  Google Scholar 

  128. Xue G, Kwapinska M, Horvat A, Li Z, Dooley S, Kwapinski W, et al. Gasification of miscanthus x giganteus in an air-blown bubbling fluidized bed: a preliminary study of performance and agglomeration. Energy Fuels. 2014;28:1121–31.

    Article  CAS  Google Scholar 

  129. Mac an Bhaird ST, Walsh E, Hemmingway P, Maglinao AL, Capareda SC, McDonnell KP. Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material. Powder Technol. 2014;254:448–59.

    Article  CAS  Google Scholar 

  130. Mac an Bhaird ST, Hemmingway P, Walsh E, Maglinao AL, Capareda SC, McDonnell KP. Bubbling fluidised bed gasification of wheat straw-gasifier performance using mullite as bed material. Chem Eng Res. 2015;97:36–44. https://doi.org/10.1016/j.cherd.2015.03.010.

    Article  CAS  Google Scholar 

  131. Serrano D, Sánchez-Degado S, Horvat A. Sepiolite performance as bed material towards gas and tar compositions during C. Cardunculus L. gasification. Eur Biomass Conf Exhib Proc. 2017;2017:755–9.

    Google Scholar 

  132. Serrano D, Sánchez-Delgado S, Horvat A. Effect of sepiolite bed material on gas composition and tar mitigation during C. cardunculus L. gasification. Chem Eng J. 2017;317:1037–46. https://doi.org/10.1016/j.cej.2017.02.106.

    Article  CAS  Google Scholar 

  133. Gómez-Hernández J, Serrano D, Soria-Verdugo A, Sánchez-Delgado S. Agglomeration detection by pressure fluctuation analysis during Cynara cardunculus L. gasification in a fluidized bed. Chem Eng J. 2016;284:640–9.

    Article  Google Scholar 

  134. Faust R, Berdugo Vilches T, Malmberg P, Seemann M, Knutsson P. Comparison of ash layer formation mechanisms on Si-containing bed material during dual fluidized bed gasification of woody biomass. Energy Fuels. 2020;34:8340–52.

    Article  CAS  Google Scholar 

  135. Qi X, Song G, Song W, Yang S. Effect of bed materials on slagging and fouling during Zhundong coal gasification. Energy Explor Exploit. 2017;35:558–78.

    Article  CAS  Google Scholar 

  136. Lane DJ, Van Eyk PJ, Ashman PJ, Kwong CW, De Nys R, Roberts DA, et al. Release of Cl, S, P, K, and Na during thermal conversion of algal biomass. Energy Fuels. 2015;29:2542–54.

    Article  CAS  Google Scholar 

  137. Wagner K, Häggström G, Skoglund N, Priscak J, Kuba M, Öhman M, et al. Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass. Appl Energy. 2019;248:545–54.

    Article  CAS  Google Scholar 

  138. Morris JD, Sheraz S, Nimmo W. Biomass and Bioenergy Agglomeration and the effect of process conditions on fluidized bed combustion of biomasses with olivine and silica sand as bed materials: pilot-scale investigation. Biomass Bioenergy. 2020;142:105806. https://doi.org/10.1016/j.biombioe.2020.105806.

    Article  CAS  Google Scholar 

  139. Kuba M, He H, Kirnbauer F, Skoglund N, Boström D, Öhman M, et al. Mechanism of layer formation on olivine bed particles in industrial-scale dual fluid bed gasification of wood. Energy Fuels. 2016;30:7410–8.

    Article  CAS  Google Scholar 

  140. Michel R, Kaknics J, De Bilbao E, Poirier J. The mechanism of agglomeration of the refractory materials in a fluidized-bed reactor. Ceram Int. 2016;42:2570–81.

    Article  CAS  Google Scholar 

  141. Serrano D, Sánchez-Delgado S, Sobrino C, Marugán-Cruz C. Defluidization and agglomeration of a fluidized bed reactor during Cynara cardunculus L. gasification using sepiolite as a bed material. Fuel Process Technol. 2015;131:338–47.

    Article  CAS  Google Scholar 

  142. Van Ommen JR, Coppens MO, Van Den Bleek CM, Schouten JC. Early warning of agglomeration in fluidized beds by attractor comparison. AIChE J. 2000;46:2183–97.

    Article  Google Scholar 

  143. Chirone R, Miccio F, Scala F. Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel: effect of the reactor scale. Chem Eng J. 2006;123:71–80.

    Article  CAS  Google Scholar 

  144. Leimbach S, Lukas J, Kolb S, Yang L, Plankenbühler T, Sega M, et al. Early detection of agglomeration in fluidized beds by means of frequency analysis of pressure fluctuations. Energy Fuels. 2022;36:4924–32.

    Article  CAS  Google Scholar 

  145. Di Giuliano A, Funcia I, Pérez-Vega R, Gil J, Gallucci K. Novel application of pretreatment and diagnostic method using dynamic pressure fluctuations to resolve and detect issues related to biogenic residue ash in chemical looping gasification. Processes. 2020. https://doi.org/10.3390/pr8091137.

    Article  Google Scholar 

  146. Shabanian J, Sauriol P, Chaouki J. A simple and robust approach for early detection of defluidization. Chem Eng J. 2017;313:144–56.

    Article  CAS  Google Scholar 

  147. Nijenhuis J, Korbee R, Lensselink J, Kiel JHA, van Ommen JR. A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chem Eng Sci. 2007;62:644–54.

    Article  CAS  Google Scholar 

  148. Khadilkar AB, Rozelle PL, Pisupati SV. A study on initiation of ash agglomeration in fluidized bed gasification systems. Fuel. 2015;152:48–57.

    Article  CAS  Google Scholar 

  149. Khadilkar AB, Rozelle PL, Pisupati SV. Effect of heterogeneity in coal ash chemical composition on the onset of conditions favorable for agglomeration in fluid beds. Energies. 2015;8:12530–45.

    Article  CAS  Google Scholar 

  150. Hannl TK, Sefidari H, Kuba M, Skoglund N, Öhman M. Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation. Biomass Conver Bioref. 2021;11:57–68.

    Article  CAS  Google Scholar 

  151. Jerzak W. Thermodynamic prediction of the effect of excess air ratios and combustion temperatures on the equilibrium phases formed during ash fusion from coal and cedar nut shells. Energy Fuels. 2017;31:12756–69.

    Article  CAS  Google Scholar 

  152. Shabanian J, Sauriol P, Rakib A, Chaouki J. Defluidization prediction and prevention during cocombustion of reengineered feedstock with coal in a bubbling fluidized bed combustor. Energy Fuels Am Chem Society. 2019;33:1603–21.

    Article  CAS  Google Scholar 

  153. Khan MR. Apparatus for direct measurement of ash fusion and sintering behavior at elevated temperatures and pressures. Rev Sci Instrum. 1989;60:3304–9.

    Article  CAS  Google Scholar 

  154. Khadilkar AB, Rozelle PL, Pisupati SV. Investigation of fluidized bed agglomerate growth process using simulations and SEM-EDX characterization of laboratory-generated agglomerates. Chem Eng Sci. 2018. https://doi.org/10.1016/j.ces.2018.03.035.

    Article  Google Scholar 

  155. Gupta S, Wall TF, Creelman RA, Gupta R. Ash fusion temperatures and the transformations of coal ash particles to slag. ACS Div Fuel Chem Prepr. 1996;41:647–9.

    CAS  Google Scholar 

  156. Lawrence A, Ilayaperumal V, Dhandapani KP, Srinivasan SV, Muthukrishnan M, Sundararajan S. A novel technique for characterizing sintering propensity of low rank fuels for CFBC boilers. Fuel. 2013;109:211–6.

    Article  CAS  Google Scholar 

  157. Mackenzie RC. Origin and development of differential thermal analysis. Thermochim Acta. 1984;73:307–67.

    Article  CAS  Google Scholar 

  158. Liu H, Feng Y, Wu S, Liu D. The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw. Bioresour Technol. 2009;100:6505–13.

    Article  CAS  PubMed  Google Scholar 

  159. Maglinao AL, Capareda SC. Predicting fouling and slagging behavior of dairy manure (DM) and cotton gin trash (CGT) during thermal conversion. Am Soc Agric Biol Eng. 2010;53:903–9.

    CAS  Google Scholar 

  160. Shen X, Zeng J. Prediction of rice straw ash fusion behaviors and improving its ash fusion properties by layer manure addition. J Mater Cycles Waste Manag. 2020;22:965–74. https://doi.org/10.1007/s10163-020-00991-x.

    Article  CAS  Google Scholar 

  161. Billen P, Van Caneghem J, Vandecasteele C. Predicting melt formation and agglomeration in fluidized bed combustors by equilibrium calculations. Waste Biomass Valoriz. 2014;5:879–92.

    Article  CAS  Google Scholar 

  162. Piispanen MH, Niemelä ME, Tiainen MS, Laitinen RS. Prediction of bed agglomeration propensity directly from solid biofuels: a look behind fuel indicators. Energy Fuels. 2012;26:2427–33.

    Article  CAS  Google Scholar 

  163. Gatternig B, Karl J. Prediction of ash-induced agglomeration in biomass-fired fluidized beds by an advanced regression-based approach. Fuel. 2015;161:157–67. https://doi.org/10.1016/j.fuel.2015.08.040.

    Article  CAS  Google Scholar 

  164. Chaivatamaset P, Sricharoon P, Tia S, Bilitewski B. A prediction of defluidization time in biomass fired fluidized bed combustion. Appl Therm Eng. 2013;50:722–31.

    Article  CAS  Google Scholar 

  165. Moradian F, Tchoffor PA, Davidsson KO, Pettersson A, Backman R. Thermodynamic equilibrium prediction of bed agglomeration tendency in dual fluidized-bed gasification of forest residues. Fuel Process Technol. 2016;154:82–90. https://doi.org/10.1016/j.fuproc.2016.08.014.

    Article  CAS  Google Scholar 

  166. Elled AL, Åmand LE, Steenari BM. Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels: experimental data in comparison with predictions by a thermodynamic equilibrium model. Fuel. 2013;111:696–708. https://doi.org/10.1016/j.fuel.2013.03.018.

    Article  CAS  Google Scholar 

  167. Gatternig B, Karl J. Application of chemical equilibrium calculations for the prediction of ash-induced agglomeration. Biomass Conver Bioref. 2019;9:117–28.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by SERB, DST, Govt. of India through the research project on ‘Agglomeration abatement in fluidized bed gasification of lignocellulosic biomasses’ (Project File No. CRG/2021/00833).

Funding

This work was funded by SERB, DST, Govt. of India (Grant No.: CRG/2021/00833).

Author information

Authors and Affiliations

Authors

Contributions

MB, PS, PA and CM jointly developed the conceptual idea. Data analysis and first draft of the paper was prepared by MB and PS. PA and CM led the technical discussions, data consolidation and finalizing the write-up.

Corresponding author

Correspondence to P. Arun.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benny, M., Suraj, P., Arun, P. et al. Agglomeration behavior of lignocellulosic biomasses in fluidized bed gasification: a comprehensive review. J Therm Anal Calorim 148, 9289–9308 (2023). https://doi.org/10.1007/s10973-023-12013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12013-7

Keywords

Navigation